Evaluation of a New Commercially Available Rapid Assimilation of Trehalose (RAT) Test for the Identification of *Candida glabrata*

THERESA SCOGNAMIGLIO, LAWRENCE P. KISS, DAVISE H. LARONE

Cornell Medical Center, New York-Presbyterian Hospital, New York, New York

ABSTRACT

BACKGROUND: As the occurrence and significance of *C. glabrata* in clinical specimens increases it is ever more important that a prepared, reliable, and inexpensive RAT test be available for routine use. This study evaluates a new commercial RAT test and compares results of isolates taken from 2 prominent isolation media.

METHODS: 40 *C. glabrata* and 40 other *Candida* species (12 *C. albicans*, 12 *C. parapsilosis*, 9 *C. tropicalis*, 4 *C. lusitaniae*, 3 *C. krusei*) were inoculated onto CHROMagar Candida (CAC) and Sabouraud Dextrose Agar (SDA) (both from Becton Dickinson [BD], Cockeysville, MD) and incubated for 48 hours at 30°C. The Trehalose Screen (Scientific Device Laboratory [SDL], Des Plaines, IL) consists of a slide with 4 substrate lined wells. Each well was rehydrated with 100 µL of sterile water; a heavy inoculum (3-5 colonies) from CAC and SDA was then mixed into each well to form a homogenous suspension. The tests were incubated at 37°C and examined at 1 & 4 hours. A positive reaction was indicated by a change in suspension color from green to yellow.

RESULTS: The reactions were very clear and easy to read. All *C. glabrata* tested from CAC were RAT test positive at 1 and 4 hours (sensitivity 100%). The same isolates from SDA yielded 4 false negatives (sensitivity 90%). Of the other *Candida* species, all were RAT test negative from CAC at 1 and 4 hours and from SDA at 1 hour (specificity 100%). However, 7 isolates from SDA (5 *C. albicans*, 2 *C. tropicalis*) produced false positive results at 4 hours (specificity 83% with extended incubation).

CONCLUSION: The new SDL RAT assay is very useful for distinguishing *C. glabrata* from other *Candida* species. Optimal results are obtained with isolates from BD’s CAC (sensitivity & specificity 100%). One hour incubation is best, as isolates from SDA may give false positives if incubated for 4 hours. Additionally, isolates of *C. glabrata* from SDA may give false negative results and require further testing for identification. Of note, the SDL assay closely mimics the previously reported results of the NCCLS (M35-P) proposed method and has a more rapid reaction time and is more reasonably priced than other products currently on the market.

INTRODUCTION

C. glabrata, once considered to be a nonpathogenic saprophyte, has become an increasing cause of systemic and mucosal fungal infections following increased use of immunosuppressive therapy and broad spectrum antimicrobial drugs. In our institution, *C. glabrata* is the 2nd most common clinically encountered yeast. The organism is known to exhibit increased resistance to fluconazole with previous exposure to the drug. The infections caused by *C. glabrata* may have a high mortality rate in immunocompromised patients. Therefore, early and accurate identification has a significant effect on patient management. *C. glabrata* can be distinguished from other *Candida* species by its ability to rapidly assimilate trehalose. As the importance of *C. glabrata* in the clinical setting becomes more apparent, it is necessary that a prepared, reliable, and inexpensive RAT test be in routine use. This study evaluates a new commercially available RAT test and compares results of isolates when taken from 2 prominent isolation media.
MATERIALS AND METHODS

• 40 C. glabrata and 40 isolates of other Candida species from clinical stock cultures were inoculated onto CHROMagar Candida (CAC) and Sabouraud Dextrose Agar (SDA) and incubated at 30°C for 48 hours.

• The Trehalose Screen (Scientific Device Laboratory [SDL], Des Plaines, IL) was performed on each of the 80 yeast isolates; the organisms were tested from both CAC and SDA.

• The RAT screen test consists of 4 substrate-lined wells which were rehydrated with 100 µL of sterile water.

• 3-5 colonies from CAC and from SDA were mixed into individual wells to form a homogenous suspension.

• Tests were incubated at 37°C in ambient air and examined at 1 and 4 hours.

• A positive reaction was indicated by a color change from blue to clear yellow or tan-yellow. Blue, green, or greenish-yellow indicated a negative reaction.

RESULTS

![Images of yeast cultures on CAC and SDA](images)

- C. glabrata/C. parapsilosis
- C. albicans/C. tropicalis

RAT test slide (before rehydration)

RAT test slide wells rehydrated with 100 µL sterile H₂O

Inoculate each well with 3-5 colonies of yeast

Appearance of inoculated RAT tests after 1 hour incubation

- C. glabrata
- C. parapsilosis
- C. albicans
- C. tropicalis

Isolates from SDA

Isolates from CAC
• Reactions were clear and easy to read with optimal reaction time of 1 hour.
• Positive reactions on isolates from CAC were yellow with a beige tinge while those from SDA were bright yellow.
• Table 1 shows the RAT test results for *C. glabrata* and the other *Candida* species.

Isolates grown on CAC yielded 100% sensitivity and 100% specificity for all *Candida glabrata* and other *Candida* spp.

Isolates grown on SDA yielded 90% sensitivity at both 1 & 4 hours; The specificity was 100% at 1 hour and 83% at 4 hours.

Table 1. RAT test results for *C. glabrata* and other *Candida* species from CAC vs SDA

<table>
<thead>
<tr>
<th>Organism</th>
<th>#</th>
<th>CAC 1 hr</th>
<th>CAC 4 hr</th>
<th>SDA 1 hr</th>
<th>SDA 4 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>C. albicans</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C. krusei</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

CAC = CHROMagar Candida;
SDA = Sabouraud Dextrose Agar

Table 2. Calculation of Sensitivity & Specificity or RAT test from CAC vs SDA

<table>
<thead>
<tr>
<th></th>
<th>CAC</th>
<th>SDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 HR</td>
<td>4 HR</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

DISCUSSION

• As compared to SDA, CAC is the better medium from which to take isolates for the SDL RAT test (as seen in the Tables).
• One hour incubation is best for the SDL RAT test, as isolates from SDA may give false positives if incubated for 4 hours and lead to misidentification (as observed in isolates of *C. albicans* and *C. tropicalis*).
• Isolates of *C. glabrata* from SDA may give false negative results at both 1 & 4 hours and require further testing for identification; this would not lead to misidentification.
• The SDL RAT assay closely mimics the reported results of the NCCLS (M35-P) proposed method developed at Mayo Clinic (Stockman and Roberts, 1985).
• We now routinely use the SDL Trehalose Screen in our clinical mycology laboratory.
CONCLUSIONS

- Optimal results on the SDL Trehalose Screen are obtained from BD's CAC (sensitivity and specificity 100%) as isolates from SDA may give false negative results (sensitivity 90%).

- 1 hour incubation is optimal as isolates from SDA may give false positive results if incubated longer (specificity 83% at 4 hours).

- The SDL Trehalose Screen is easy to read, yields excellent results, is inexpensive, and has a more rapid reaction time than current products on the market.

ACKNOWLEDGEMENTS

Much appreciation is extended to Riva Zinchuk for her technical assistance.

We would also like to thank Scientific Device Laboratory for providing the Trehalose Screen slides for testing.