Detection of *Bordetella pertussis* by Homogeneous Strand Displacement Amplification for use on the BDProbeTec™ ET System

J. WOOD, S. JOSHI, L. KOHLER AND T. HELLYER

BD Diagnostic Systems • 7 Loveton Circle • Sparks, MD, USA 21152

ABSTRACT

Development of a pertussis vaccine in the 1950s has made whooping cough an uncommon disease in developed countries although reported cases have increased since 1980. We have developed an assay for *Bordetella pertussis* targeting a sequence within the pertussis toxin promoter (ptx) gene. The assay uses strand displacement amplification (SDA) and real-time detection that employs a universal fluorescence energy transfer detector probe. The *B. pertussis* assay is part of a respiratory panel currently under development (along with assays for *Legionella pneumophila* and *Mycoplasma pneumoniae*) for use on the BDProbeTec™ ET System. This assay features an internal control that may be used to control for sample inhibition. The approximate analytical sensitivity of the BDProbeTec™ ET *B. pertussis* assay is less than 100 copies of target DNA per reaction. The assay is specific for *B. pertussis* when tested with other bacteria, including other members of the genus *Bordetella*. The assay successfully detected ten ATCC™ strains of *B. pertussis*.

INTRODUCTION

*Bordetella pertussis* causes whooping cough (pertussis), pneumonia, and bronchitis in humans. Pertussis occurs in epidemic cycles and reported cases of pertussis have been on the rise since 1980. Common methods for the detection of *Bordetella pertussis*, such as direct-fluorescent antibody (DFA) staining, have variable sensitivities and may be technique dependent. The organism may lose viability in transport and is fairly-slow growing on culture media.

A method has been developed for determining the presence or absence of *Bordetella pertussis* DNA in respiratory or other samples. The method employs nucleic acid primers to amplify a target within the pertussis toxin promoter (ptx) region, using strand displacement amplification (SDA) with real-time detection on the BDProbeTec™ ET System. The assay uses a universal detection system and incorporates an optional internal amplification control to indicate assay inhibition.

As part of a respiratory panel, along with *Legionella pneumophila*, *Mycoplasma pneumoniae*, and *Chlamydiiaceae* family assays, the *Bordetella pertussis* assay* has the potential to expand the capabilities of the BDProbeTec™ ET System.

ACKNOWLEDGEMENTS

We would like to thank Gordon Franklin, Mark Hall, Daryl Shank, Christine Keys, Martin Jenkins and Max Kuhn for their contributions to this poster.

* * product under development
ASSAY DEVELOPMENT. The assay has been statistically optimized for potassium phosphate, dimethyl sulfoxide, glycerol, potassium hydroxide, bicine, enzyme levels and primer concentrations. The target region from ATCC™ strains 53894 and 9340 were cloned into separate pUC19 plasmids to use as target sources in optimization experiments. We sequenced the SDA target region of ten ATCC™ strains and found that most were similar to either strain 53894 or 9340. The SDA primer binding sequences within the pertussis toxin promoter region vary slightly between the two strains, however, the assay detects both sequence variants.

INTERNAL CONTROL. Internal amplification control (IAC) target was prepared by mutating the pertussis toxin promoter region of a clone of ATCC strain 53894. Diplex reactions co-amplify IAC at 80 copies/ reaction with native target. Monoplex reactions amplify native target alone. The dual-dye capability of the BDProbeTec™ ET System allows detection of both native target detector probe and IAC detector probe to occur in 60 minutes. Figure 2.

DATA ANALYSIS. All experiments were performed using the BDProbeTec™ ET System. Data were analyzed using the Time to Threshold (T3) algorithm developed for this instrument. Negative samples never achieve the threshold value and are assigned a T3 value of 60. Positive samples have T3<60.

ANALYTICAL SENSITIVITY / LIMIT OF DETECTION. To determine the analytical sensitivity of the Bordetella pertussis assay in both monoplex and diplex formats, SDA was performed on dilutions of each cloned target nucleic acid sequence. Sixteen replicates were tested at each target level with and without IAC. Figure 3.

SPECIFICITY. Dilutions of a McFarland #1 standard were made with 10 different ATCC™ strains of Bordetella pertussis. Each strain was tested in triplicate using the diplex assay format. Figure 4.

CROSS-REACTIVITY. Cross-reactivity was tested by challenging the assay with a variety of microorganisms, including bacteria, fungi, and viruses. Organism suspensions containing approximately 1x10^7 organisms/mL were resuspended in PBS/BSA buffer and assayed in the diplex BDProbeTec™ ET Bordetella pertussis assay. Three replicates of each organism were examined in the presence of the IAC to validate negative results. Figure 5.

INTERNAL AMPLIFICATION CONTROL EFFECTIVENESS. The ability of the BDProbeTec™ ET Bordetella pertussis assay’s IAC to identify an inhibited sample was evaluated by examining the effect of increasing levels of type III Histones. This testing employed the diplex assay format with 100 copies target plasmid (strain 53894). Eight replicates were run at each inhibitor level. Figure 6.

NON-SPECIFIC DNA TOLERANCE. The tolerance of the BDProbeTec™ ET Bordetella pertussis diplex assay to non-specific DNA was evaluated. Eight replicates at each of eight non-specific DNA levels were tested in the diplex assay format in the presence of 100 copies target plasmid (strain 53894). Figure 7.

COMPATIBILITY WITH SAMPLE EXTRACTION KITS. Compatibility with the Qiagen and Gentra DNA extraction kits was demonstrated by extracting 100 copies/rxn of cloned native target plasmid (Bordetella pertussis ATCC 53894) along with 80 copies/reaction of IAC plasmid (Figure 7). Two hundred microliters samples were extracted with the QIAamp® DNA Blood Mini Kit (blood and body fluid spin protocol), and 50 µL samples were extracted using the Gentra® PureGene DNA Isolation Kit (body fluids protocol) according to the instructions of each manufacturer. Eight replicates were assayed in the BDProbeTec™ ET Bordetella pertussis system and compared to an unprocessed control (N=8). Figure 8.

RESULTS

Figure 1. BDProbeTec™ ET Liquid SDA Workflow

METHODS
Native Target Internal Control

Figure 2. Diplex Universal Detection

Internal Amplification Control
- Verifies negative results and identifies inhibitory samples
- Same priming sequences as native target but with mutated internal region
- Native target and IAC detected using probes labeled with different dyes

Figure 3. Analytical Sensitivity Limit of Detection

Addition of the IAC does not significantly affect the LOD. Data in parentheses represent upper and lower 95% bounds of confidence.

Figure 4. Specificity

All *Bordetella pertussis* strains were detected at < 1000 organisms per reaction

*Two of three replicates were positive.

Figure 5. Cross Reactivity. (All organisms tested at ~10^6 organisms/reaction)

None of the organisms tested cross-reacted in the BDProbeTec™ ET *Bordetella pertussis* Assay.

None of the organisms tested cross-reacted in the BDProbeTec™ ET *Bordetella pertussis* Assay.
CONCLUSIONS

- A sensitive and specific assay has been developed for the detection of *Bordetella pertussis* DNA using the BDProbeTec™ ET System.
- The assay is compatible with both the QIAamp® and Gentra® DNA extraction kits and is tolerant to varying levels of non-specific DNA.
- The assay has been developed with an optional internal control which has been shown to be effective at verifying negative results and identifying inhibitory samples.
- The *Bordetella pertussis* assay does not cross-react with other bacteria, viruses, or fungi likely to be encountered in respiratory samples. As part of a respiratory panel currently under development, along with *Legionella pneumophila*, *Mycoplasma pneumoniae*, and *Chlamydiaceae* family assays, the *Bordetella pertussis* assay has the potential to expand the capabilities of the BDProbeTec™ ET System.

---

Figure 6. IAC Effectiveness. SDA Inhibition with Histones (type III)

![Graph showing the Mean Time to Threshold for *Bordetella pertussis* and IAC with histones](graph)

*IAC is effective at indicating SDA inhibition. Error bars represent +/- 1 Standard Deviation.*

---

Figure 7. Tolerance to Non-specific DNA

![Graph showing the Mean Time to Threshold for *Bordetella pertussis* and IAC with non-specific DNA](graph)

*Both *Bordetella pertussis* and internal amplification control targets are tolerant to a wide range of Non-specific DNA levels.*

---

Figure 8. Compatibility with Extraction Methods

![Graph showing the Mean Time to Threshold for *Bordetella pertussis* and IAC with different extraction methods](graph)

*The BDProbeTec™ ET *Bordetella pertussis* assay is compatible with the QIAamp® Mini Blood Kit and the Gentra® PureGene DNA Isolation Kit.*

---

CONCLUSIONS

- A sensitive and specific assay has been developed for the detection of *Bordetella pertussis* DNA using the BDProbeTec™ ET System.
- The assay is compatible with both the QIAamp® and Gentra® DNA extraction kits and is tolerant to varying levels of non-specific DNA.
- The assay has been developed with an optional internal control which has been shown to be effective at verifying negative results and identifying inhibitory samples.
- The *Bordetella pertussis* assay does not cross-react with other bacteria, viruses, or fungi likely to be encountered in respiratory samples. As part of a respiratory panel currently under development, along with *Legionella pneumophila*, *Mycoplasma pneumoniae*, and *Chlamydiaceae* family assays, the *Bordetella pertussis* assay has the potential to expand the capabilities of the BDProbeTec™ ET System.