BD GeneOhm™ StrepB

REF 441240

IVD
Table of Contents / Tables des Matières / Inhaltstabelle / Índice / Indice

English .......................................................................................................................... 5-18
Intended use .................................................................................................................. 5
Summary and explanation of the test ......................................................................... 5
Warning ......................................................................................................................... 5
Principle of the procedure .......................................................................................... 5
Reagents ......................................................................................................................... 6
Precautions .................................................................................................................... 7
Materials provided ....................................................................................................... 8
Storage, handling and stability ...................................................................................... 8
  Collected specimen ................................................................................................... 8
  Reagents ..................................................................................................................... 8
Materials required but not provided .......................................................................... 8
Instructions for use ...................................................................................................... 9
  Specimen collection ................................................................................................. 9
  Specimen prepration ............................................................................................... 9
  BD GeneOhm™ StrepB assay procedure ................................................................10
Quality Control ........................................................................................................... 10
  Positive and negative controls .............................................................................. 10
  Specimen processing controls .............................................................................. 11
Antimicrobial susceptibility testing for penicillin-allergic patients .............................. 11
Interpretation of results .............................................................................................. 11
  Invalid assay Run .................................................................................................. 11
  Unresolved specimens ............................................................................................ 11
  Specimen not determined due to I-CORE® module failure .................................. 12
Limitations of the procedure ...................................................................................... 12
Interfering substances ................................................................................................. 12
Expected values .......................................................................................................... 13
Performance characteristics ....................................................................................... 13
  Clinical performances ............................................................................................ 13
  Analytical specificity .............................................................................................. 15
  Analytical sensitivity ............................................................................................... 15
  Reproducibility ....................................................................................................... 16
Français .......................................................................................................................... 17-30
Indication ..................................................................................................................... 17
Résumé et explication du test ...................................................................................... 17
Mise en garde ............................................................................................................... 17
Principe du test ............................................................................................................ 17
Réactifs ......................................................................................................................... 18
Précautions .................................................................................................................. 19
Matériel fourni ............................................................................................................ 19
Entreposage, manutention et stabilité ......................................................................... 20
  Échantillons prélevés ............................................................................................. 20
  Réactifs .................................................................................................................... 20
Matériel nécessaire mais non fourni .......................................................................... 20
Mode d’emploi ............................................................................................................. 21
  Prélèvement des échantillons ............................................................................... 21
  Préparation des échantillons ................................................................................ 21
  Procédure du test BD GeneOhm™ StrepB ............................................................ 21
Contrôle qualité .......................................................................................................... 22
  Contrôles positif et négatif .................................................................................... 22
  Contrôle du processus de préparation des échantillons ...................................... 23
Détermination de la sensibilité aux antibiotiques pour les patientes allergiques à la pénicilline ... 23
Interprétation des résultats ........................................................................................ 23
  Série invalidée ....................................................................................................... 23
  Échantillons non résolus ....................................................................................... 24
  Échantillons indéterminés en raison d’une défaillance du module I-CORE®MD ....... 24
Limites du test ............................................................................................................ 24
Substances interférentes ............................................................................................ 25
Valeurs attendues ...................................................................................................... 25
Caractéristiques de rendement .................................................................................. 25
  Sensibilité et spécificité cliniques ....................................................................... 25
  Spécificité analytique ............................................................................................. 27
  Sensibilité analytique ............................................................................................. 27
  Reproducibility ...................................................................................................... 28
Deutsch .......................................................................................................................................................... 29-43
Vorgesehene Anwendung .......................................................................................................................... 29
Zusammenfassung und Erklärung des Tests .............................................................................................. 29
Warnung ....................................................................................................................................................... 29
Das Prinzip der Methode ............................................................................................................................ 30
Reagenzien ................................................................................................................................................... 30
Vorsichtsmaßnahmen .................................................................................................................................. 30
Mitgelieferte Materialien .............................................................................................................................. 32
Lagerung, Handhabung und Stabilität ........................................................................................................ 32
Gesammelte Proben ..................................................................................................................................... 32
Reagenzien ................................................................................................................................................... 32
Materialien, welche benötigt, aber nicht mitgeliefert werden .................................................................... 33
Gebrauchsanweisungen ................................................................................................................................. 33
Probensammlung ........................................................................................................................................ 33
Probenvorbereitung .................................................................................................................................... 33
BD GeneOhm™ StrepB-Testvorgang ........................................................................................................ 34
Qualitätskontrolle ......................................................................................................................................... 35
Positive und negative Kontrollen ................................................................................................................ 35
Proben-Verarbeitungskontrollen ................................................................................................................ 35
Antimikrobieller Anfälligkeitstest für Patienten mit Penicillin-Allergien .................................................. 36
Auswertung der Ergebnisse .......................................................................................................................... 36
Ungültiger Prüfverlauf .................................................................................................................................. 36
Ungelöste Proben ......................................................................................................................................... 36
Probe wegen Fehlfunktion des I-CORE®-Moduls nicht festgestellt ........................................................... 36
Einschränkungen des Verfahrens ................................................................................................................ 36
Störsubstanzen ............................................................................................................................................ 37
Erwartete Werte .......................................................................................................................................... 37
Leistungsscharakteristika ............................................................................................................................... 38
Klinische Leistungen ................................................................................................................................... 38
Analytische Spezifität ................................................................................................................................. 40
Analytische Empfindlichkeit ...................................................................................................................... 40
Reproduzierbarkeit ..................................................................................................................................... 41
Español .......................................................................................................................................................... 42-56
Indicaciones de uso ...................................................................................................................................... 42
Resumen y explicación de la prueba ........................................................................................................... 42
Advertencia .................................................................................................................................................. 42
Principio de procedimiento .......................................................................................................................... 43
Reactivos ....................................................................................................................................................... 43
Precauciones ............................................................................................................................................... 44
Material proporcionado ............................................................................................................................... 45
Conservación, manipulación y estabilidad ................................................................................................. 45
Muestras obtenidas ..................................................................................................................................... 45
Reactivos ....................................................................................................................................................... 45
Material necesario pero no suministrado ....................................................................................................... 46
Modo de empleo .......................................................................................................................................... 46
Obtención de muestras ............................................................................................................................... 46
Preparación de muestras ............................................................................................................................. 46
Procedimiento de la prueba BD GeneOhm™ StrepB ............................................................................... 47
Control de calidad ....................................................................................................................................... 48
Controles positivo y negativo ...................................................................................................................... 48
Controles de procesamiento de las muestras ............................................................................................ 48
Prueba de sensibilidad antibiótica para pacientes alérgicos a la penicilina ............................................. 49
Interpretación de resultados ........................................................................................................................ 49
Serie no válida .............................................................................................................................................. 49
Muestras sin resolver .................................................................................................................................. 49
Muestra sin determinar debido a fallo del módulo I-CORE® ..................................................................... 49
Limitaciones del procedimiento .................................................................................................................. 50
Sustancias interferentes ............................................................................................................................... 50
Valores previstos ......................................................................................................................................... 51
Eficacia diagnóstica ...................................................................................................................................... 51
Eficacia clínica .............................................................................................................................................. 51
Especificidad analítica ................................................................................................................................. 53
Sensibilidad analítica ................................................................................................................................. 53
Reproductibilidad ....................................................................................................................................... 54
Intended use

BD GeneOhm™ StrepB assay is a qualitative in vitro diagnostic test for the rapid detection of Group B streptococcus (GBS) DNA in vaginal/rectal specimens from prepartum or intrapartum women. The test performed on the SmartCycler® automated analyzer utilizes polymerase chain reaction (PCR) for the amplification of a cfb gene sequence of GBS recovered from clinical samples and fluorogenic target-specific hybridization for the detection of the amplified DNA.

BD GeneOhm™ StrepB assay can be used to establish GBS colonization status of prepartum and intrapartum women.

Summary and explanation of the test

A vaginal/rectal specimen is collected and transported to the laboratory using a recommended swab with Liquid Stuart Medium (refer to Materials required but not provided). The swab is eluted in sample buffer; an aliquot of the specimen is then lysed and added to the PCR reagents which contain the GBS-specific primers used to amplify the genetic target of the assay (cfb gene), if present. The assay also includes an internal control (IC) to detect PCR inhibitory specimens and to confirm the integrity of assay reagents. Amplified targets (cfb gene and IC) are detected with hybridization probes labelled with quenched fluorophores (molecular beacons). The amplification, detection and interpretation of the signals are done automatically by the Cepheid SmartCycler® software. The whole procedure takes about 45 minutes.

Recently, the incidence of perinatal group B streptococcal disease in the United States has been decreasing because of antibiotic prophylaxis used for prevention of GBS diseases. A national survey of ACOG members in 2000 found that 73.5% of respondents used a screening-based strategy, showing that antepartum screening highly contributed to the 70% decrease of early-onset GBS disease since the 1996 Centers for Disease Control and Prevention (CDC) guidelines were implemented. Moreover, in cases of short labor, the availability of antepartum screening results allows for the administration of intravenous antibiotics as soon as possible after admission (< 5 hours). Based on current diagnostic tools, the US CDC recommends universal prenatal culture-based screening for vaginal and rectal GBS colonization of all women at 35-37 weeks gestation.

Although this recommendation is based on documentation of a strong protective effect of the culture-based screening strategy relative to the risk-based strategy, antepartum screening has limitations. The results of the screening are sometimes not known to the physician at the time of delivery, colonization status may change between testing and delivery, and some women do not undergo antepartum screening. In each case, these women may not be treated appropriately for GBS colonization, thereby increasing the risk of infecting the newborn. A sensitive rapid-screening test for GBS that can provide intrapartum screening results in time to administer antibiotic prophylaxis would be useful to several groups of women including those who have had inadequate prenatal care, whose results of antepartum screening are unknown at the time of delivery, and those facing preterm delivery.

Warning

- The use of BD GeneOhm™ StrepB for intrapartum screening should not preclude the use of other strategies (e.g., antepartum testing). Intrapartum BD GeneOhm™ StrepB results are useful to identify candidates for intrapartum antibiotic prophylaxis when results can be available in time to administer intravenous antibiotics at least 4 hours before delivery.
- The BD GeneOhm™ StrepB assay does not provide susceptibility results. Additional time is needed to culture and perform susceptibility testing that would be recommended for penicillin-allergic women.

Principle of the procedure

The genetic target of the BD GeneOhm™ StrepB assay is the cfb gene. This gene encodes for the CAMP factor, a diffusible extra-cellular protein which is present in virtually all GBS isolates. Detection of the CAMP factor is used for the presumptive identification of GBS by biochemical methods. Phenotypic and molecular characterizations showed that the cfb gene is well conserved within this species. Primers complementary to conserved and specific regions of the gene have been developed to amplify a 154 bp fragment of the cfb gene.

A vaginal/rectal swab is collected and transported to the laboratory using the recommended swab with Liquid Stuart Medium (refer to Materials required but not provided). The swab is placed in sample buffer
to elute its content and an aliquot is transferred to the lysis tube. Lysis occurs through a combination of chemical and physical actions and takes less than 15 minutes. A sample of the lysate is added directly to the PCR reagents contained into the SmartCycler® reaction tube, and run with the SmartCycler® instrument, a random access real-time fluorescence thermal cycler.

In specimens containing GBS, the 154 bp region of the \textit{c}fb gene will be amplified and detected. Amplification of the IC, a 180-bp DNA fragment consisting of a 134-bp sequence not found in GBS flanked by the sequence of each of the two GBS-specific primers, will also take place.

The amplified DNA targets are detected with molecular beacons, a hairpin-forming single-stranded oligonucleotides labelled at one end with a quencher and at the other end with a fluorescent reporter dye (fluorophore). In the absence of target, the fluorescence is quenched. In the presence of target, the hairpin structure opens upon beacon/target hybridization, resulting in emission of fluorescence. For the detection of GBS amplicons, the molecular beacon contains the fluorophore FAM at the 5’ end and the non-fluorescent quencher moiety DABCYL at the opposite end of the oligonucleotide. For the detection of the IC amplicons, the molecular beacon contains the fluorophore TET at the 5’ end and the quencher DABCYL at the 3’ end. Each beacon-target hybrid fluoresces at a wavelength characteristic of the fluorophore used in the particular molecular beacon. The amount of fluorescence at any given cycle, or following cycling, depends on the amount of specific amplicons present at that time. The SmartCycler® simultaneously monitors the fluorescence emitted by each beacon, interprets all data and at the end of the cycling program provides a final result (see Interpretation of Results).

**Reagents**

**BD GeneOhm™ StrepB**

- **Sample Buffer**
  - 60 x 1 mL
  - Tris-EDTA buffer

- **Lysis tube**
  - Glass beads

- **Master Mix**
  - 50 tubes
  - < 0.001% DNA polymerase complex
  - < 0.001% Internal Control - non-infectious DNA containing GBS primers binding sequences and a unique sequence for probe hybridization
  - < 0.001% primers
  - < 0.002% molecular probes
  - < 0.05% dATP, dCTP, dGTP, dTTP
  - Bovine serum albumin
  - Carbohydrate
  - < 0.005% non-infectious genomic DNA from \textit{Streptococcus pneumoniae}

- **Positive Control**
  - 50 tubes
  - < 0.001% DNA polymerase complex
  - < 0.001% Internal Control - non-infectious DNA containing GBS primers binding sequences and a unique sequence for probe hybridization
  - < 0.001% primers
  - < 0.002 % molecular probes
  - < 0.05% dATP, dCTP, dGTP, dTTP
  - Bovine serum albumin
  - Carbohydrate
  - < 0.001% non-infectious genomic GBS DNA with the \textit{c}fb gene

- **Negative Control**
  - 50 tubes
  - < 0.001% DNA polymerase complex
< 0.001% Internal Control - non-infectious DNA containing GBS primers binding sequences and a unique sequence for probe hybridization
< 0.001% primers
< 0.002% molecular probes
< 0.05% dATP, dCTP, dGTP, dTTP
Bovine serum albumin
Carbohydrate
< 0.005% non-infectious genomic DNA from Streptococcus pneumoniae

Diluent

Tris-HCl buffer
MgCl₂
(NH₄)₂SO₄

Precautions

This test is for in vitro diagnostic use only.

- Do not use the kit if the outer carton safety seal is broken.
- Do not use reagents if the protective pouches are open or torn upon arrival.
- Close protective pouches of Master Mix and Controls quickly with the zip seal after each use.
- Do not use reagents if desiccant is not present inside Master Mix and Control pouches.
- Do not remove desiccant from Master Mix and Control pouches.
- Reagents are not interchangeable between lots.

Never pool reagents from different tubes even if they are from the same lot.

- Do not use the reagents after their expiration date.
- Do not interchange caps among reagents as contamination may occur and compromise test results.
- Avoid microbial and deoxyribonuclease (DNAse) contamination of reagents when removing aliquots from tubes. The use of sterile DNAse-free disposable filter-blocked or positive displacement pipettor tips is recommended.
- To avoid contamination of the environment with GBS amplicons, do not open the reaction tubes post-amplification.
- Use a new tip for each specimen or reagent.
- Performing the assay outside the time ranges recommended can produce invalid results. Assays not falling within the specified time ranges should be repeated.
- Additional controls may be tested according to guidelines or requirements of local, state, provincial and/or federal regulations or accrediting organizations.
- In cases where open-tube PCR tests are also conducted by the laboratory, separated and segregated working areas should be used for specimen preparation and amplification / detection activities. Supplies and equipment should be dedicated to each area and should not be moved from one area to another. Gloves must always be worn and must be changed before changing from one area to another or before manipulating lyophilized reagents.
- Always handle specimens as if they are infectious and in accordance with safe laboratory procedures such as those described in Biosafety in Microbiological and Biomedical Laboratories® and in the CLSI Document M29®.
- Wear protective clothing and disposable gloves while handling kit reagents. Wash hands thoroughly after performing the test.
- Do not pipet by mouth.
- Do not smoke, drink, or eat in areas where specimens or kit reagents are being handled.
- Dispose of unused reagents and waste in accordance with country, federal, provincial, state and local regulations.
Materials provided

- Sample buffer
- Lysis tube
- Master mix
- Positive Control (PC)
- Negative Control (NC)
- Diluent
- Specimen identification labels

Storage, handling and stability

Collected specimen

Specimens should be kept between 2°C and 30°C during transport. Protect against freezing or exposure to excessive heat.

Specimens that can be tested within 24 hours can be kept at room temperature; if not, it is recommended that they be refrigerated. Specimens stored between 2°C and 8°C are stable for up to 6 days.

Reagents

Note: Storage conditions must follow the specifications written on each pouch. Tubes outside of their protective bag and unused within specified time limit should be discarded.

<table>
<thead>
<tr>
<th>Kit Component</th>
<th>Master mix and Controls (white, red or green labels)</th>
<th>Lysis tube (yellow cap)</th>
<th>Sample buffer, and Diluent (blue cap, and black strip label respectively)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealed pouch</td>
<td>2-25°C</td>
<td>2-25°C</td>
<td>2-25°C</td>
</tr>
<tr>
<td>Stability</td>
<td>Expiration date</td>
<td>Expiration date</td>
<td>Expiration date</td>
</tr>
<tr>
<td>Opened pouch</td>
<td>2-8 °C</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
</tr>
<tr>
<td>1</td>
<td>2-25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>1 month</td>
<td>Expiration date</td>
<td>2 months</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Once the original seal on the pouch is broken, carefully close the pouch with the zip seal after each use and store at 2-8°C.
2. Although these reagents can be stored at room temperature they should be kept with their accompanying reagents of the same lot at 2-8°C.
3. Provided the bag is properly closed with the zip seal after each use.

<table>
<thead>
<tr>
<th>Kit Component outside of their protective pouch</th>
<th>Master mix and Controls (white, red or green labels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not reconstituted tubes</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
</tr>
<tr>
<td></td>
<td>15-25 °C</td>
</tr>
<tr>
<td></td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Materials required but not provided

- **BBL™ CultureSwab™ Liquid Stuart** (Becton Dickinson catalog no. 220099), **Copan Transystem™ Liquid Stuart** (Copan Italia International catalog no. 141C.USE), **Copan Venturi Transystem™ Liquid Stuart** (Copan Diagnostics Inc. catalog no. 141C.US), **HealthLink TransPorter™ single Liquid Stuart** (HealthLink catalog no. 4432)
- **Vortex** Genie 2 (Fisher) with microtube holder or equivalent; for processing multiple samples, adapters with multiple holding sites can be used
• Micropipettors (accurate range between 1-50 µL)
• Sterile DNAse-free filter-blocked or positive displacement pipettor tips
• Scissors
• Gauzes
  • Disposable gloves, powderless
• Microcentrifuge for low speed centrifugation
• Dry heating block for 1.5 mL tubes or water bath
• Ice or cooling block for 1.5 mL tubes
• Stopwatch or timer
• SmartCycler® starter system with Dx Software (processing block, user manual, accessory kit, and desktop computer) (Cepheid, Sunnyvale, CA, USA)

Instructions for use

Specimen collection

In order to obtain an adequate specimen, the procedure for specimen collection must be followed closely.

Using the recommended swab with Liquid Stuart Medium (refer to Materials required but not provided), vaginal-rectal specimens are collected according to the following procedure:

1. Wipe away excessive amount of secretion or discharge from the vaginal area;
2. Carefully insert the swab into the lower one-third part of the vagina, and sample secretions from the mucosa;
3. Carefully insert the same swab, approximately 2.5 cm beyond the anal sphincter, and gently rotate to sample anal crypts;
4. Replace the swab in its container;
5. Label the container;
6. Ship the swabs to the laboratory according to hospital standard operating procedures. For specimens sent to a laboratory off-site, the specimen should be protected against exposure to excessive heat.
7. At the laboratory, keep all specimens at room temperature until testing (if within 24 hours from collection);
8. Refer to the section entitled “Storage, handling and stability - Collected specimens” for storage and handling.

Specimen preparation

Note: One Sample Buffer tube (blue cap) and one Lysis tube (yellow cap) are required for each specimen to be tested. Remove the required number of tubes from their protective pouches, remove the excess air and close the pouches quickly with the zip seal.

1. Place the collection device (swab) in a Sample Buffer tube (blue cap).
   Identify the Sample Buffer on the cap and/or the tube label.
2. Break the swab stem and close the tube tightly.
   Hold the swab by the stem near the rim of the tube (use gauze to minimize risks of contamination). Lift the swab a few millimeters (mm) from the bottom of the tube and bend the stem against the edge of the tube to break it. Alternative method: use clean scissors to cut the stem. Make sure the cap will close tightly.
3. Let stand for 5 minutes.
4. Vortex at high speed for 15 seconds.
   For processing multiple samples, adapters with multiple holding sites can be used.
5. Transfer 50 µL of cell suspension to the Lysis tube (yellow cap); close tightly.
   Use a new micropipettor tip for each specimen.
6. Vortex at high speed for 5 minutes.
   For processing multiple samples, adapters with multiple holding sites can be used.
7. Centrifuge the Lysis tube briefly (quick spin).
At low speed for 2 to 5 seconds; to bring the content to the bottom of the tube.

8. **Heat at 95 ± 2°C for 2 minutes.**
   
   Use a dry heating block for 1.5 mL tubes or a water bath.

9. **Put the Lysis tube on ice or on a cooling block.**

**BD GeneOhm™ StrepB assay procedure**

**Note:** One Master Mix tube (SmartCycler® tube with a white label) is required for each specimen to be tested. One Positive Control tube (red label) and one Negative Control tube (green label) are required per assay run. One Diluent tube (label with black strip) is required for the preparation of up to 40 PCR reactions. Remove the required number of tubes from their protective pouch, remove the excess air, and close the pouch quickly with the zip seal.

Prepare only enough SmartCycler tubes to fill available I-CORE® modules on the SmartCycler® instrument.

1. **Place Master Mix, Positive and Negative Control tubes to be tested on the SmartCycler® cooling block.**
   
   Identify the Master Mix tube(s) (white label) on the cap with the specimen identification labels provided with the kit.

2. **Open the Master Mix, Positive and Negative Control tubes.**
   
   Hold the tube firmly by the ribbed upper portion, and lift the cap with an upward vertical movement. Do not lift horizontally. Avoid touching the optical detection windows at the bottom edges of the tube and the lower diamond-shaped area.

3. **Add 25 µL of Diluent (black label) to all tubes; partially close the Master Mix tubes.**
   
   Deliver the Diluent into the reservoir (upper part) of each tube.

4. **Add 1.5 µL of each lysate to a different Master Mix tube; close the tubes tightly.**
   
   Take care not to aspirate beads when pipetting into the Lysis tube. After the addition of the specimen, pipette up and down 2-3 times in the reservoir to ensure transfer of the complete volume. Close the Lysis tube and the Master Mix tube. Use a new micropipettor tip for each specimen.

5. **Close the Positive and Negative Control tubes.**
   
   The Negative Control should be the last sample prepared for a given assay (i.e. all samples run simultaneously on the SmartCycler®).

6. **Centrifuge all reaction tubes for 5-10 seconds.**
   
   Use the specially adapted microcentrifuge provided with the SmartCycler®.

7. **Keep the reaction tubes at 2-8 °C on the SmartCycler® cooling block before loading on the instrument.**
   
   The remaining lysates should be frozen at -20 ± 5 °C for later use, if necessary.

8. **Just before loading the tubes on the instrument, take the COOLING BLOCK WITH THE TUBES STILL IN PLACE and VORTEX UPSIDE DOWN for 5-10 seconds.**

9. **Create a run with the BD GeneOhm™ StrepB assay protocol.**
   
   Refer to the SmartCycler® Dx Software Operator Manual if needed. You should enter the identification parameters for the specimens before starting the run.

10. **Insert each reaction tube in an I-CORE® module of the SmartCycler® and close the I-CORE® lid.**
   
   Place the Positive and Negative Controls at their appropriate position (see the section entitled "Quality control"). Press down all the tubes firmly into place.

11. **Start the run.**

**Quality Control**

**Positive and negative Controls**

Quality control procedures are designed to monitor assay performance. The Positive Control is intended to monitor for substantial reagent failure. The Negative Control is used to detect reagent or environmental contamination (or carry-over) by either *S. agalactiae* or GBS amplicons. Positive and Negative Controls are assay controls (run controls). An invalid control invalidates the run. Finally, an internal control incorporated into each reaction mixture is intended to monitor PCR inhibition in each specimen.
One Positive Control and one Negative Control must be processed for each assay run on the SmartCycler®. The software automatically assigns the position of the controls on the instrument (refer to the SmartCycler® Dx Software Operator Manual).

**Specimen processing controls**

Control strains may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations. A culture of group B *Streptococcus* (e.g., *S. agalactiae*, American Type Culture Collection, ATCC 12973) or a well characterized clinical isolate of *S. agalactiae* may be used as a specimen processing control while a culture of *Streptococcus bovis* (e.g. ATCC 33317) or of any other non-group B *Streptococcus* may be used as an external negative control.

Transfer 3 colonies of 1-2 mm in size from a fresh sheep blood agar plate into 3 mL of Tryptic Soy Broth and grow to an OD of 0.6 at 600 nm. Prepare serial dilutions in saline to obtain a bacterial suspension of approximately $10^6$ CFU/mL. Dip the recommended swab with Liquid Stuart Medium (refer to Materials required but not provided) into the bacterial suspension, replace the swab into its container (to allow contact with the transport medium), let stand at room temperature for 5 min and then process and test as a clinical specimen (Refer to sections entitled Specimen preparation and BD GeneOhm™ StrepB assay procedure). All specimens and controls should yield valid results (no invalid positive or negative control and no failed internal control).

This procedure may also serve as a quality control procedure for specimen collection devices. In such cases, testing should be done in triplicate according to the package insert instructions (Specimen preparation), including controls. All specimens and controls should yield valid results (no invalid positive or negative control and no failed internal control).

For general QC guidance, the user may wish to refer to CLSI MM3 and C24.

**Antimicrobial susceptibility testing for penicillin-allergic patients**

Note: The Sample Buffer should not affect organism viability. However, use of the buffer in culturing has not been evaluated. A second swab may be obtained from women in order to conduct antimicrobial susceptibility testing. Laboratories may choose to validate other approaches. Procedures for culturing and antimicrobial susceptibility testing are available from the CDC.

**Interpretation of results**

The decisional algorithm for the BD GeneOhm™ StrepB assay is embedded in the SmartCycler® software. Interpretation of assay results is done according to the following criteria:

<table>
<thead>
<tr>
<th>Assay result reported</th>
<th>IC result reported</th>
<th>Interpretation of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG</td>
<td>PASS</td>
<td>No GBS DNA detected, presumed negative for GBS or number of organisms may be below the limit of detection of the assay</td>
</tr>
<tr>
<td>POS</td>
<td>NA</td>
<td>GBS DNA detected, presumed positive for GBS</td>
</tr>
<tr>
<td>Unresolved</td>
<td>FAIL</td>
<td>Unresolved—inhbitory specimen or reagent failure</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
<td>Not determined due to I-Core® Module failure (with Warning or Error Codes$^A$)</td>
</tr>
</tbody>
</table>

IC = Internal Control; NA = not applicable; ND = not determined.

$^A$ Refer to the SmartCycler® Dx Software Operator Manual for the interpretation of warning and error codes.

**An invalid positive or negative control invalidates the assay run.** In such cases, assay results obtained in that run are invalid and must not be reported. Invalid assay run or instrument error codes or warnings are flagged on-screen and on reports. Before reporting GBS results, always verify that the assay run is valid. Refer to the SmartCycler® Dx Software Operator Manual for printing results.

**Invalid assay Run**

Using frozen lysate(s), prepare new reaction tubes for all clinical specimens within that assay run along with new control tubes.

**Unresolved specimens**

Repeat testing with the corresponding specimen frozen lysate. The effect of the freeze-thaw cycle has been shown to reduce PCR inhibitory substances.

---

P0001(02) - 11 -
**Specimen not determined due to I-CORE® module failure**

Repeat testing with the corresponding specimen frozen lysate. For the interpretation of warning or error code messages, refer to the SmartCycler® Dx Software Operator Manual.

**Limitations of the procedure**

- Performance of this test has been established with the SmartCycler® instrument, with vaginal-rectal specimen from antepartum and intrapartum patients collected with Copan Venturi Transystem® with Liquid Stuart Medium. Therefore, this product can only be used with the SmartCycler®; moreover, the use of specimen collection and transport system other than those listed in the Material required but not provided section is not recommended. Other clinical sources have not been assessed and performance characteristics of this test are unknown on other specimen types.

- Negative test results may occur from improper specimen collection, handling or storage, presence of inhibitor, technical error, sample mix-up or because the number of organisms in the specimen is below the analytical sensitivity of the test. Careful compliance to the instructions given in this insert and in the SmartCycler® Dx Software Operator Manual is necessary to avoid erroneous results. Use of this test should be limited to personnel trained on the procedure and on the use of the SmartCycler®.

- Since detection of group B *Streptococcus* is dependent on the number of organisms present in the sample, reliable results are dependent on proper specimen collection, handling and storage.

- BD GeneOhm™ StrepB assay results may sometimes be unresolved or invalidated due to an invalid control, and require retesting that can result in a delay for obtaining the results.

- False negative results may also occur due to the presence of polymerase inhibitory substances; the internal control present in the Master Mix allows the detection of such substances.

- Mutations in primer or probe binding regions may affect detection, especially when organisms are present at less than $10^4$ organisms. There are no published reports of GBS strains or isolates lacking the *cfb* gene. If such a case occurred, BD GeneOhm™ StrepB assay would yield a false negative result. No phenotypically CAMP-negative GBS isolates have been evaluated with BD GeneOhm™ StrepB assay.

- A positive test result does not necessarily indicate the presence of viable organism. It is however presumptive for the presence of group B *Streptococcus*.

- Methods for culturing from the BD GeneOhm™ StrepB Sample Buffer have not been evaluated. Laboratories must validate their own culturing procedures or collect a second specimen to hold in reserve.

- Results from BD GeneOhm™ StrepB assay should be used as an adjunct to clinical observations and other information available to the physician. The test is not intended to differentiate carriers of group B *Streptococcus* from those with streptococcal infection. Test results may also be affected by concurrent antibiotic therapy, therefore therapeutic success or failure cannot be assessed using this test since DNA may persist following antimicrobial therapy.

- Although there is no need for reagent preparation and the main technical operations include pipetting, good laboratory technique is essential to the proper performance of this assay. Due to the high analytical sensitivity of this test, extreme care should be taken to preserve the purity of all reagents, especially in cases where multiple aliquots are taken from a single tube.

- Good laboratory practices and the use of gloves are recommended to avoid contamination of specimens or reagents.

**Interfering substances**

Potentially interfering substances include, but are not limited to the following: amniotic fluid, meconium, blood, feces, lubricant, urine, and vaginal mucosa. The presence of excessive vaginal secretions (antepartum or intrapartum) may inhibit PCR and give unresolved results. Therefore, it is recommended that the vaginal area be wiped away prior to sampling. The presence of excessive blood may also lead to PCR inhibition and an unresolved result.

In an investigational study involving 803 vaginal/rectal specimens from intrapartum maternity patients, potentially interfering substances mentioned above were reported for 63% of collected specimens. Only 1% (10/803) of the specimens yielded unresolved results. Of those, there was no potentially interfering
substance reported for 6 specimens, amniotic fluid for 1 and a combination of substances for 3 of them. All but one were resolved following a freeze-thaw cycle of the specimen. For the specimen that could not be resolved, no potentially interfering substance was observed.

**Expected values**

Approximately 10% to 30% of pregnant women are colonized with GBS in the vagina or rectum\(^2\). GBS colonization can be transient, chronic or intermittent. Culture screening of both the vagina and rectum for GBS late in gestation during prenatal care can detect women who are likely to be colonized with GBS at the time of delivery. In the investigational study for BD GeneOhm™ StrepB, the overall colonization rate at the time of delivery determined with the culture technique was 18.6% with a range from 9.1% to 28.7% at the different clinical sites. With BD GeneOhm™ StrepB, overall, 20.1% of intrapartum women were positive. In addition to intrapartum screening, a subset of women (674) also had preterm culture screening. Of these, 11.7% were positive during antepartum testing.

Overall, 10.2% of these women had antepartum culture results different than intrapartum culture results and 11.6% had antepartum culture results different than BD GeneOhm™ StrepB intrapartum results. In other studies, sensitivities of 87%\(^{11}\) (83-92% CI) and 69%\(^{12}\) (57-79% CI) and specificities of 96%\(^{11}\) (95-98% CI) and 92%\(^{12}\) (89-94% CI) have been reported for late-prenatal cultures for identifying colonization status at delivery.

**Performance characteristics**

**Clinical performances**

Performance characteristics of BD GeneOhm™ StrepB assay were determined in a multi-site prospective investigational study: five institutions with maternity services, 2 in Canada and 3 in the U.S. Each institution had in place a culture-based screening program. Testing was done in clinical laboratories affiliated with each institution. To be enrolled in the study, women had to provide written consent, be in labor and have no contraindication to vaginal examination (e.g. bleeding). There was also no evidence of placenta previa, no urgent indication to proceed to delivery and no antibiotic used in the week prior to admission. The study did not account for times to delivery for the patients.

The method of reference used was the culture technique recommended by the Centers for Disease Control and prevention, that is, microbiological culture in selective broth medium (Todd-Hewitt broth medium supplemented with 15 µg/mL of nalidixic acid, and 10 µg/mL of colistin, or with 8 µg/mL of gentamicin and 15 µg/mL of nalidixic acid: other commercially available media include SBM broth or Lim Broth), followed by overnight incubation and subculture onto solid blood agar medium. Specific identification of colonies suggestive of GBS was done with slide agglutination tests.

Eight hundred and eighty one (881) women consented to participate in the study. Of those, 78 were excluded because the woman had either changed her mind or was not in labor or because of deviations to the protocol. Therefore, the performance characteristics of BD GeneOhm™ StrepB were determined from results of 803 intrapartum maternity patients.

Two vaginal/rectal specimens from each intrapartum maternity patient were collected with the recommended swab with Liquid Stuart Medium (refer to Materials required but not provided) using the CDC recommended procedure\(^2\). One swab was tested with the CDC recommended culture technique and one swab with the BD GeneOhm™ StrepB assay. The results of the study are presented in Tables 1 to 4.

**Table 1. Results obtained with BD GeneOhm™ StrepB assay in reference to the culture technique.**

<table>
<thead>
<tr>
<th>Culture technique</th>
<th>BD GeneOhm™ StrepB assay</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>140(^A)</td>
<td>9</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>27(^B)</td>
<td>626(^C)</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>167</td>
<td>635</td>
<td><strong>802</strong></td>
<td></td>
</tr>
</tbody>
</table>

\(^A\) Fourteen (14) specimens were initially culture negative but upon investigation were found to be culture positive; 1 of the 14 had initially tested unresolved but upon re-testing gave a positive result; 3 specimens that were initially BD GeneOhm™ StrepB assay positive were retested because of invalid controls (positive and negative) and tested positive.

\(^B\) One (1) specimen that was initially positive with BD GeneOhm™ StrepB assay was retested because of an invalid control and re-tested positive.

\(^C\) Twelve (12) specimens that were initially negative with BD GeneOhm™ StrepB assay were retested because of an invalid control and all tested negative; 8 specimens that initially gave an unresolved result gave a negative result upon retesting.

\(^D\) One (1) specimen that gave an initially unresolved result remained unresolved upon retesting and was not included in the table above.
Investigation of specimens that yielded culture positive/BD GeneOhm™ StrepB negative results (n=9) revealed that all specimens had a bacterial load below the detection limit of BD GeneOhm™ StrepB. It was also shown that all isolates recovered from the culture positive plates yielded a positive result with BD GeneOhm™ StrepB.

Investigation of specimens that yielded culture negative/ BD GeneOhm™ StrepB positive results (n=27) revealed that all specimens did contain the proper target region (including primer binding regions) of the cbf gene and that the amplified product was that expected with BD GeneOhm™ StrepB.

The overall prevalence of the study population was 18.6%, with a range from 9.1% to 28.7% at the different clinical sites. The negative predictive value was 98.6% (95% CI, 97.3% - 99.3%) and the positive predictive value was 83.8% (95% CI, 77.4% - 89.1%).

### Table 2. Clinical performance of BD GeneOhm™ StrepB assay in reference to the CDC recommended culture technique.

<table>
<thead>
<tr>
<th>Site</th>
<th>Clinical Sensitivity (n)</th>
<th>Clinical Specificity (n)</th>
<th>No. of unresolved specimens</th>
<th>Invalid/total no. of runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93% (15) (68%-100%) A</td>
<td>93% (150) (87%-96%) A</td>
<td>5</td>
<td>2/55</td>
</tr>
<tr>
<td>2</td>
<td>88% (25) (69%-97%)</td>
<td>100% (62) (97%-100%)</td>
<td>0</td>
<td>0/38</td>
</tr>
<tr>
<td>3</td>
<td>99% (77) (93-100%)</td>
<td>97% (350) (94%-98%)</td>
<td>1</td>
<td>1/56</td>
</tr>
<tr>
<td>4</td>
<td>85% (13) (54%-98%)</td>
<td>100% (35) (98%-100%)</td>
<td>1</td>
<td>1/21</td>
</tr>
<tr>
<td>5</td>
<td>89% (19) (67%-99%)</td>
<td>93% (56) (82%-98%)</td>
<td>3</td>
<td>1/22</td>
</tr>
<tr>
<td>Total</td>
<td>94% (149) (89%-97%)</td>
<td>96% (653) (94% - 97%)</td>
<td>10</td>
<td>5/192</td>
</tr>
</tbody>
</table>

A Binomial 95% confidence intervals.

### Table 3. Stratification of results according to the time elapsed between specimen collection and testing with BD GeneOhm™ StrepB assay.

<table>
<thead>
<tr>
<th>Elapsed time (hours)</th>
<th>Culture positive</th>
<th>Culture negative</th>
<th>% agreement (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD GeneOhm™ positive</td>
<td>BD GeneOhm™ negative</td>
<td>BD GeneOhm™ negative</td>
</tr>
<tr>
<td>0 to 4</td>
<td>11 / 11</td>
<td>3 / 3</td>
<td>88 / 88</td>
</tr>
<tr>
<td>4 to 8</td>
<td>32 / 32</td>
<td>3 / 3</td>
<td>220 / 220</td>
</tr>
<tr>
<td>8 to 12</td>
<td>9 / 9</td>
<td>0 / 0</td>
<td>29 / 29</td>
</tr>
<tr>
<td>12 to 24</td>
<td>41 / 41</td>
<td>2 / 2</td>
<td>143 / 143</td>
</tr>
<tr>
<td>24 to 48</td>
<td>35 / 35</td>
<td>0 / 0</td>
<td>127 / 127</td>
</tr>
<tr>
<td>&gt; 48</td>
<td>12 / 12</td>
<td>1 / 1</td>
<td>19 / 19</td>
</tr>
<tr>
<td>Total</td>
<td>140 / 9 A</td>
<td>27 / 9</td>
<td>626 / 27 A</td>
</tr>
</tbody>
</table>

A All specimens had a bacterial load below the detection limit of BD GeneOhm™ StrepB.

Membrane rupture did not affect performances of BD GeneOhm™ StrepB assay. Using the presence or absence of amniotic fluid and/or meconium in collected specimens as an indication of membrane rupture, the sensitivity and specificity of BD GeneOhm™ StrepB assay are the same used antepartum or intrapartum (Table 4).

### Table 4. Performance of BD GeneOhm™ StrepB assay antepartum and intrapartum.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>% agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antepartum</td>
<td>95% (53/56)</td>
<td>96% (301/315)</td>
<td>95% (354/371)</td>
</tr>
<tr>
<td></td>
<td>(85-99%) A</td>
<td>(93-98%)</td>
<td>(93-97%)</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>94% (87/93)</td>
<td>96% (325/338)</td>
<td>96% (412/431)</td>
</tr>
<tr>
<td></td>
<td>(86-98%)</td>
<td>(94-98%)</td>
<td>(93-97%)</td>
</tr>
</tbody>
</table>

A Binomial 95% confidence intervals.
**Analytical specificity**

Genomic DNA from 99 ATCC strains representing 27 species of streptococci, other species phylogenetically related to *S. agalactiae*, other bacteria and yeasts commonly found in vaginal and rectal flora and human DNA were tested. Among those were 9 organisms that had not been reported to carry the *cfb* gene but elicit CAMP-like activity. For microbial DNA, 1.5 ng (2x10⁵ equivalent genome copies per PCR reaction or 10⁸ equivalent genome copies/mL) were used. For human DNA, 75 to 233 ng (up to 1.4x10⁵ genome copies per reaction or 10⁸ copies/mL) were used. The specificity was 100%.

**Analytical sensitivity**

The analytical sensitivity (Limit of Detection or LOD) of BD GeneOhm™ StrepB assay was determined with 12 strains of *S. agalactiae* representing 11 known serotypes or variants. Quantitated culture and purified genomic DNA diluted in the Sample Buffer of BD GeneOhm™ StrepB assay were tested in 5 replicates. The LOD is defined as the smallest concentration at which all replicates test positive.

The LOD of BD GeneOhm™ StrepB assay for *S. agalactiae*, serotypes and variants Ia, Ib/c, II, IIc, IIR, III, IIRC, IIIR, V and VR, ranges between 10 and 50 genome copies per reaction with a median of 25 genome copies per reaction. The LOD in CFU is 3 to 9 CFU/reaction. Taking into account the dilution factor due to specimen processing, this translates into 10³ to 10⁴ CFU/swab. The following table details the lowest concentration of each subtype giving a positive result in all 5 replicates.

### Table 5. LOD obtained for each serotype tested.

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Genome copies /reaction</th>
<th>CFU /reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 12973 (II)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>IIR</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Ia/c</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>VR</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Ia</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Ib/c</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIR</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>IIc</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIcÅ</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

Å For serotype IIc, a mismatch exists in one of the primer binding region.
Reproducibility

A panel of 10 simulated specimens (R1 to R10) with varying concentrations of GBS and the two controls (positive and negative) supplied with BD GeneOhm™ StrepB assay were tested in triplicate on three different days at each of 3 sites (10 specimens plus 2 controls tested X 3 X 3 days X 3 sites). One lot of reagent was used for the study.

Table 6. Summary of reproducibility results.

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Total agreement</th>
<th>Total % agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Negative</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Weak positive</td>
<td>3/9</td>
<td>7/9</td>
<td>8/9</td>
<td>18/27</td>
<td>66%</td>
</tr>
<tr>
<td>Weak positive</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positive</td>
<td>8/9</td>
<td>9/9&lt;sup&gt;a&lt;/sup&gt;</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positive</td>
<td>9/9&lt;sup&gt;a&lt;/sup&gt;</td>
<td>9/9&lt;sup&gt;b&lt;/sup&gt;</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Positive</td>
<td>9/9&lt;sup&gt;a&lt;/sup&gt;</td>
<td>9/9&lt;sup&gt;b&lt;/sup&gt;</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Strong positive</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Strong positive</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Strong positive</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Pos Control</td>
<td>3/3&lt;sup&gt;c&lt;/sup&gt;</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Neg Control</td>
<td>3/3&lt;sup&gt;c&lt;/sup&gt;</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Total agreement</td>
<td>88/96</td>
<td>106/108</td>
<td>107/108</td>
<td>301/312</td>
<td>96.5%</td>
</tr>
<tr>
<td>% agreement</td>
<td>91.6%</td>
<td>98.1%</td>
<td>99.1%</td>
<td>96.5%</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> All positive specimens have varying amounts of GBS.
<sup>b</sup> Specimen initially unresolved but upon retesting gave the expected result.
<sup>c</sup> All replicates we tested as a single run instead of three separate runs of 10 specimens and 2 controls.
**Indication**

Le test BD GeneOhm™ StrepB est un test qualitatif de diagnostic *in vitro* pour la détection rapide de l’ADN de streptocoques du groupe B (SGB) dans des échantillons vagino-rectaux prélevés chez des femmes au stade *prepartum* ou *intrapartum*. Le test, réalisé sur le SmartCycler®, exploite la réaction de polymerisation en chaîne (PCR : *Polymerase Chain Reaction*) pour amplifier une séquence du gène *cfb* présent chez les streptocoques du groupe B retrouvés dans les prélèvements cliniques, et l’hybridation de sondes fluorogéniques spécifiques à la cible afin de détecter les produits d’amplification.

Le test BD GeneOhm™ StrepB sert à déterminer le statut de colonisation à streptocoques du groupe B (SGB) chez les femmes enceintes (stades *prepartum* et *intrapartum*).

**Résumé et explication du test**

Un échantillon vagino-rectal est prélevé à l’aide d’un écouvillon, conservé dans un milieu de transport et acheminé au laboratoire. L’écouvillon est retiré de la gaine protectrice et placé dans le tampon d’échantillon. Après l’obtention d’une suspension, une aliquote de l’échantillon est prélevée, lysée, puis ajoutée aux réactifs de la PCR, qui sont des réactifs prêts à l’emploi, permettant la mise en œuvre du test. Le logiciel SmartCycler® de Cepheid analyse automatiquement les données générées. La durée totale du test est d’environ 45 minutes.

L’incidence des infections périnatales à streptocoques du groupe B a diminué récemment aux États-Unis en raison de la pratique très répandue de l’antibiothérapie prophylactique 1-2. Selon une enquête nationale menée en 2000 auprès des membres de l’American College of Obstetricians and Gynecologists (ACOG), 73,5 % des répondants ont eu recours au dépistage ; indiquant qu’il a grandement contribué à la réduction des infections à SGB depuis la publication en 1996 des recommandations des Centers for Disease Control and Prevention (CDC)3. Cependant, le dépistage en phase *antepartum* a des limites44. Un test de dépistage rapide et sensible du SGB, effectué en phase *intrapartum*, pouvant fournir les résultats à temps pour l’antibiothérapie prophylactique sera utile pour les femmes qui n’ont pas bénéficié de surveillance *antepartum*, celles pour lesquelles les résultats du dépistage *antepartum* n’est pas connu et celles qui accouchent prématurément.

**Mise en garde**

- Le recours au test BD GeneOhm™ StrepB en phase *intrapartum* ne devrait pas exclure le recours à d’autres stratégies (par exemple le dépistage en phase *antepartum*). Le test BD GeneOhm™ StrepB en phase *intrapartum* permet d’identifier les candidates à l’antibiothérapie prophylactique lorsque les résultats sont connus au moins 4 heures avant l’accouchement afin de permettre l’antibiothérapie.

- Le test BD GeneOhm™ StrepB ne donne pas de résultats quant à la sensibilité aux antibiotiques. Un délai additionnel peut être requis pour procéder aux cultures et aux épreuves de sensibilité aux antibiotiques recommandés pour les patientes allergiques à la pénicilline.

**Principe du test**

Le gène *cfb* est la cible génétique du test BD GeneOhm™ StrepB. Ce gène code pour le facteur CAMP, une protéine extracellulaire diffuseable virtuellement présente chez tous les SGB. La détection de cette protéine par les méthodes biochimiques est utilisée pour l’identification presumée de la bactérie. Les analyses phénotypiques et moléculaires ont démontré le haut degré de conservation du gène *cfb* parmi l’espèce5-6. Une région conservée et spécifique du gène a été retenue comme cible d’amplification, produisant un fragment de 154 pb.

Un échantillon vagino-rectal est prélevé à l’aide d’un écouvillon recommandé avec milieu Stuart liquide (voir Matériel nécessaire mais non fourni) et transporté au laboratoire. L’écouvillon est placé dans le tampon d’échantillon afin d’en élever le contenu, puis une aliquote est transférée dans le tube de lyse. La lyse se fait par actions chimique et mécanique et dure moins de 15 minutes. Un échantillon du lysat est ajouté directement au réactif de la PCR, contenus dans un tube réactionnel SmartCycler®, le test est ensuite réalisé sur le SmartCycler®.

La région de 154 pb du gène *cfb* sera amplifiée et détectée dans les échantillons contenant du SGB. Il y aura également amplification d’un fragment de 180 pb du contrôle interne (CI), fragment composé d’une
séquence de 134 pb étrangère au génome du SGB, et flanquée par la séquence de chacune des deux amorces spécifiques aux SGB.

Les cibles d’ADN amplifiées sont détectées à l’aide de beacons moléculaires. Il s’agit de courts oligonucléotides simple brin adoptant une conformation en épingle à cheveux et marqués par une molécule absorbante (quencher) à une extrémité et par une molécule fluorescente (fluorophore) à l’autre. En absence de la cible, le fluorophore est étiré par le quencher. En présence de la cible toutefois, la structure en épingle à cheveux s’ouvre suite à son appariement avec l’amplicon, permettant l’émission de fluorescence par le fluorophore. Pour la détection des amplicons du SGB, le beacon moléculaire est marqué par le fluorophore FAM à son extrémité 5’ et par le DABCYL, une molécule absorbante non fluorescente, à son extrémité 3’. Les amplicons du contrôle interne sont détectés par un beacon marqué avec le fluorophore TET à l’extrémité 5’ et le DABCYL à l’extrémité 3’. Chaque hybride beacon-cible fluoresce à une longueur d’onde caractéristique du fluorophore utilisé pour marquer le beacon. La quantité de fluorescence émise à chaque cycle, ou à la fin du PCR, est représentative de la quantité d’amplicons spécifiques présents au même moment. Le SmartCycler® mesure simultanément la fluorescence émise par chaque beacon et interprète les données générées afin de fournir un résultat final à la fin du programme PCR (se référer à la section Interprétation des résultats).

Réactifs

**Test BD GeneOhm™ StrepB**

50 tests

**Tampon d’échantillon (Sample Buffer)**

Tris-EDTA buffer

60 x 1 mL

**Tube de lyse (Lysis tube)**

Billes de verre

50 tubes

**Mélange réactionnel (Master Mix)**

Complexe ADN - polymérase < 0,001%

Contrôle interne < 0,001 % : ADN non infectieux contenant les séquences complémentaires des amorces de SGB et une séquence unique pour la sonde d’hybridation

Amorces < 0,001%

Sondes d’hybridation < 0,002%

dATP, dCTP, dGTP, dTTP < 0,05%

Albumine bovine

Hydrate de carbone

ADN génomique non infectieux de *Streptococcus pneumoniae* < 0,005%

50 tubes

**Contrôle positif (Positive Control)**

Complexe ADN - polymérase < 0,001%

Contrôle interne < 0,001 % : ADN non infectieux contenant les séquences complémentaires des amorces de SGB et une séquence unique pour la sonde d’hybridation

Amorces < 0,001%

Sondes d’hybridation < 0,002%

dATP, dCTP, dGTP, dTTP < 0,05%

Albumine bovine

Hydrate de carbone

ADN génomique non infectieux de SGB contenant le gène *cfb* < 0,001 %.

50 tubes

**Contrôle négatif (Negative Control)**

Complexe ADN - polymérase < 0,001%

Contrôle interne < 0,001 % : ADN non infectieux contenant les séquences complémentaires des amorces de SGB et une séquence unique pour la sonde d’hybridation

Amorces < 0,001%

Sondes d’hybridation < 0,002%

dATP, dCTP, dGTP, dTTP < 0,05%

Albumine bovine

Hydrate de carbone

ADN génomique non infectieux de *Streptococcus pneumoniae* < 0,005%

50 tubes

**Diluant (Diluent)**

Tampon Tris-HCl

50 x 1 mL
MgCl₂
(NH₄)₂SO₄

Précautions

Test aux fins de diagnostic *in vitro* seulement

- Ne pas utiliser la trousse si le sceau de sécurité sur la boîte extérieure est brisé.
- Ne pas utiliser les réactifs si les pochettes de protection sont ouvertes ou déchirées à l’arrivée.
- Refermer rapidement, après chaque emploi, les pochettes de protection du mélange réactionnel et des contrôles au moyen de la fermeture à glissière.
- Ne pas utiliser le mélange réactionnel ou les contrôles si les pochettes ne contiennent pas de dessiccant.
- Ne pas retirer les dessiccants des pochettes de mélange réactionnel et de contrôles.
- Les lots de réactifs ne sont pas interchangeables.
- Ne jamais mélanger les réactifs de différents tubes même s’ils proviennent du même lot.
- Ne pas utiliser les réactifs après la date de péremption.
- Ne pas changer les capuchons des réactifs entre eux étant donné qu’ils peuvent être contaminés et fausser les résultats du test.
- Éviter la contamination microbienne des réactifs ou la contamination par la désoxyribonucléase (DNAse) lors du prélèvement des aliquotes dans les tubes. Il est recommandé d’utiliser des micropipettes munies d’embouts à filtre à déplacement direct, stériles, jetables, exempts de DNase.
- Pour éviter la contamination de l’environnement par des amplicons, ne pas ouvrir les tubes réactionnels après l’amplification.
- Utiliser un nouvel embout pour chaque échantillon ou réactif.
- La réalisation du test en dehors des délais recommandés peut se solder par des résultats non valables. Les tests qui ne respectent pas les plages de temps indiquées devraient être repris.
- Des contrôles supplémentaires peuvent être effectués suivant les directives ou les exigences des organismes fédéraux, provinciaux ou locaux de réglementation ou des organismes d’accréditation.
- Lorsque des réactions de PCR en tube ouvert sont également effectuées dans le laboratoire, la préparation des échantillons ainsi que les activités d’amplification et de détection devraient se faire dans des zones distinctes de travail. Les fournitures et le matériel devraient être exclusifs à chaque zone et ne devraient pas passer d’une zone à l’autre. Il faut toujours porter des gants et les changer avant de passer dans une autre zone ou avant de manipuler les réactifs lyophilisés.
- Toujours manipuler les échantillons comme s’ils étaient infectieux et appliquer les précautions d’usage comme celles décrites dans *Biosafety in Microbiological and Biomedical Laboratories* et dans le document M29 du CLSI.
- Porter des vêtements de protection et des gants jetables pour la manipulation des réactifs. Se laver soigneusement les mains après avoir effectué le test.
- Ne pas pipeter avec la bouche.
- Ne pas fumer, boire ou manger dans les zones de manipulation des échantillons et des réactifs.
- Jeter les réactifs non utilisés et les déchets conformément à la réglementation nationale, fédérale, provinciale ou locale.

Matériel fourni

- Tampon d’échantillon (*Sample Buffer*)
- Tube de lyse (*Lysis tube*)
- Mélange réactionnel (*Master Mix*)
- Contrôle positif (*Positive Control*)
- Contrôle négatif (*Negative Control*)
- Diluant (*Diluent*)
- Étiquettes d’identification des échantillons
Entreposage, manutention et stabilité

Échantillons prélevés

Les échantillons doivent être conservés entre 2°C et 30°C durant le transport et doivent être protégés du gel et de la chaleur excessive.

Les échantillons qui peuvent être testés à l’intérieur de 24 heures peuvent être conservés à température ambiante (15-30°C); dans le cas contraire, il est recommandé de les réfrigerer. Les échantillons conservés entre 2°C et 8°C sont stables jusqu’à 6 jours.

Réactifs

Note: Entreposer les réactifs, tel que précisé sur chaque pochette. Hors de leur pochette protectrice, les tubes non utilisés à l’intérieur des délais prescrits doivent être jetés.

<table>
<thead>
<tr>
<th>Composante de la trousse</th>
<th>Master mix et Controls (étiquette blanche, rouge ou verte, respectivement)</th>
<th>Lysis tube (capuchon jaune)</th>
<th>Sample buffer et Diluent (capuchon bleu, et étiquette à bande noire, respectivement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pochette scellée</td>
<td>Température 2-25 °C</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
</tr>
<tr>
<td></td>
<td>Stabilité Date de péremption</td>
<td>Date de péremption</td>
<td>Date de péremption</td>
</tr>
<tr>
<td>Pochette ouverte1</td>
<td>Température 2-8 °C</td>
<td>2-25 °C2</td>
<td>2-25 °C2</td>
</tr>
<tr>
<td></td>
<td>Stabilité 1 mois3</td>
<td>Date de péremption</td>
<td>2 mois3</td>
</tr>
</tbody>
</table>

1 Une fois que le scellement original a été brisé, refermer la pochette au moyen de la fermeture à glissière après chaque utilisation et conserver le produit à une température de 2-8°C.
2 Même si ces réactifs peuvent être conservés à la température de la pièce, il est recommandé de les conserver avec les réactifs du même lot à 2-8°C.
3 À condition que le sac soit bien refermé au moyen de la fermeture à glissière après chaque utilisation.

Matériel nécessaire mais non fourni

- **BBL® CultureSwab® Liquid Stuart** (n° 220099 au catalogue Becton Dickinson), **Écouvillons Copan Transystem® Liquid Stuart** (n° 141C.USE au catalogue Copan Italia International), **Copan Venturi Transystem® Liquid Stuart** (n° 141C.US au catalogue Copan Diagnostics Inc.), **HealthLink TransPorter® single Liquid Stuart** (n° 4432 au catalogue HealthLink)
- **Vortex Genie 2** (Fisher) muni d’un portoir pour microtubes de 1,5 mL ou matériel équivalent; pour le traitement de plusieurs échantillons, un adaptateur à positions multiples peut être utilisé
- **Micropipettes** (plage de précision 1-50 µL)
- **Embouts à filtre ou à déplacement direct, stériles, exempts de DNAse**
- **Ciseaux**
- **Gazes**
- **Gants jetables, sans poudre**
- **Microcentrifugeuse** à faible vitesse
- **Bloc chauffant à sec** pour des tubes de 1,5 mL ou bain-marie
- **Glace ou bloc réfrigérant** pour tubes de 1,5 mL
- **Chronomètre** ou minuterie
- **Système SmartCycler® de démarrage (starter system) avec logiciel Dx (Diagnostic)** (bloc analyseur, manuel d’utilisation, trousse d’accessoires et ordinateur) (Cepheid, Sunnyvale, CA, USA)
Mode d’emploi

Prélèvement des échantillons

Afin d’obtenir des échantillons convenables, les instructions de prélèvement ci-dessous doivent être suivies avec soin.

En se servant de l’écouvillon recommandé avec milieu Stuart liquide (voir la section Matériel nécessaire mais non fourni), procéder au prélèvement d’échantillon vagino-rectal comme suit :

1. Essuyer tout surplus de sécrétion ou tout écoulement vaginal;
2. Insérer soigneusement l’écouvillon dans le premier tiers du vagin et prélever un échantillon des sécrétions de la muqueuse;
3. Insérer soigneusement ce même écouvillon à environ 2,5 cm au-delà du sphincter anal, puis le faire pivoter délicatement;
4. Replacer l’écouvillon dans sa gaine protectrice;
5. Identifier l’échantillon;
6. Acheminer au laboratoire suivant les méthodes d’opérations normalisées de l’hôpital; protéger de la chaleur excessive les échantillons devant être envoyés à un laboratoire externe.
7. Au laboratoire, conserver les échantillons à température ambiante jusqu’au moment du test (lorsque effectué moins de 24 heures suivant le prélèvement);

Préparation des échantillons

Note : Il faut, pour chaque échantillon à analyser, un tube de Sample Buffer (tampon d’échantillon, capuchon bleu) et un Lysis tube (tube de lyse, capuchon jaune). Retirer le nombre nécessaire de tubes de leur pochette de protection, enlever le surplus d’air et refermer rapidement les pochettes au moyen de la fermeture à glissière.

1. Placer l’écouvillon dans un tube de tampon d’échantillon (capuchon bleu).
   Identifier le tube contenant le tampon d’échantillon sur le capuchon et/ou sur l’étiquette du tube.
2. Casser la tige de l’écouvillon et bien refermer le tube.
   Tenir la tige de l’écouvillon près du bord du tube (une gaze peut être utilisée pour se protéger contre les risques potentiels de contamination). Soulever l’écouvillon de quelques millimètres (mm) du fond du tube et plier la tige contre le bord du tube pour la casser. Méthode alternative : utiliser des ciseaux propres pour couper la tige. S’assurer que le capuchon se refermera complètement.
3. Laisser reposer 5 minutes.
4. Vortexer à grande vitesse durant 15 secondes.
   Pour le traitement de plusieurs échantillons, un adaptateur à positions multiples peut être utilisé.
5. Transférer 50 µL de la suspension cellulaire au tube de lyse (capuchon jaune); bien refermer le tube.
   Utiliser un nouvel embout pour chaque échantillon.
6. Vortexer à grande vitesse durant 5 minutes.
   Pour le traitement de plusieurs échantillons, un adaptateur à positions multiples peut être utilisé.
7. Centrifuger le tube de lyse brièvement.
   À faible vitesse durant 2 à 5 secondes pour faire descendre le liquide au fond du tube.
8. Chauffer à 95 ± 2°C durant 2 minutes.
   Utiliser un bloc chauffant à sec ou un bain-marie.
9. Placer le tube de lyse sur la glace ou sur un bloc réfrigérant.

Procédure du test BD GeneOhm™ StrepB

Note: Un tube de Master Mix (mélange réactionnel, tube SmartCycler® à étiquette blanche) est requis pour chaque échantillon à tester. Un tube Positive Control (contrôle positif, étiquette rouge) et un tube
**Negative Control** (contrôle négatif, étiquette verte) doivent être inclus dans chaque série de tests BD GeneOhm™ StrepB Un tube de Diluent (diluant, étiquette à bande noire) est nécessaire pour préparer jusqu’à 40 réactions. Retirer le nombre nécessaire de tubes de leur pochette de protection, enlever le surplus d’air et refermer rapidement les pochettes au moyen de la fermeture à glissière.

**Préparer le nombre de tubes de SmartCycler® en fonction du nombre de modules I-COREMD disponibles sur le SmartCycler®, sans excéder.**

1. **Placer les tubes de mélange réactionnel, contrôle positif et contrôle négatif à tester sur le bloc réfrigérant SmartCycler®.**
   Identifier le(s) tube(s) de mélange réactionnel (étiquette blanche) sur le capuchon à l’aide des étiquettes d’identification fournie dans la trousse.

2. **Ouvrir les tubes de mélange réactionnel, contrôle positif et contrôle négatif.**
   Tenir le tube fermement par la partie côtelée et soulever le capuchon avec un mouvement vertical. **Éviter de toucher aux fenêtres de détection optique se trouvant sur les bords intérieurs du tube et à la partie inférieure en forme de diamant.**

3. **Ajouter 25 µL de diluant (étiquette à bande noire) à tous les tubes; refermer partiellement les tubes de mélange réactionnel.**
   Déposer le diluant dans le réservoir (partie supérieure) de chaque tube.

4. **Ajouter 1,5 µL de chacun des échantillons lysés à un tube de mélange réactionnel différent; fermer complètement les tubes.**
   Prendre soin de ne pas aspirer de billes lors du pipetage dans le tube de lyse. Après le dépôt de l’échantillon, rincer l’embout 2 à 3 fois dans le réservoir pour assurer un transfert complet de l’échantillon en entier. Fermer le tube de lyse et le tube de mélange réactionnel. Utiliser un nouvel embout pour chaque échantillon.

5. **Fermer les tubes de contrôle positif et de contrôle négatif.**
   Le contrôle négatif devrait être le dernier échantillon préparé pour une série de tests donnée (c.-à-d. tous les échantillons testés simultanément sur un SmartCycler®).

6. **Centrifuger tous les tubes réactionnels pendant 5 à 10 secondes.**
   Utiliser la microcentrifugeuse spécialement adaptée fournie avec le SmartCycler®.

7. **Garder les tubes réactionnels sur le bloc réfrigérant SmartCycler® (2 - 8°C) jusqu’à leur chargement sur l’instrument.**
   Congeler le reste des lysats à une température de -20 ± 5°C pour utilisation ultérieure, si nécessaire.

8. **Tout juste avant de charger les tubes sur l’instrument, INVERSER LE BLOC RÉFRIGÉRANT CONTENANT LES TUBES ET VORTEXER PENDANT 5-10 SECONDES.**

9. **Créer une série de tests avec le protocole du test BD GeneOhm™ StrepB.**
   Se référer au Manuel d’utilisation du logiciel SmartCycler® Dx, si nécessaire. Les paramètres d’identification des échantillons devraient être entrés avant de démarrer la série de tests.

10. **Insérer chaque tube réactionnel dans un module I-COREMD du SmartCycler®, refermer le couvercle de l ‘I-COREMD.**
   Placer les tubes de contrôle positif et de contrôle négatifs aux positions assignées par l’instrument (voir la section intitulée Contrôle qualité). Bien enfoncer chaque tube à sa place respective.

11. **Démarrer le programme PCR.**

**Contrôle qualité**

**Contrôles positif et négatif**


Chaque série de tests effectuée avec le SmartCycler® doit comprendre un contrôle positif et un contrôle négatif. Le logiciel SmartCycler® attribue la position des contrôles par défaut (consulter le manuel d’utilisation du logiciel SmartCycler® Dx).
**Contrôle du processus de préparation des échantillons**

Des souches contrôles peuvent être testées selon les directives ou les exigences des organismes fédéraux, provinciaux ou locaux de réglementation ou des organismes d'accréditation. Une culture de streptocoque du groupe B (ex. *S. agalactiae* ATCC 12973), ou un isolat clinique bien caractérisé de *S. agalactiae* peut servir de contrôle de contrôle de préparation des échantillons, une culture de *Streptococcus bovis*, par exemple ATCC 33317, ou de tout autre streptocoque n'appartenant pas au groupe B peut servir de contrôle négatif externe.

Transférer 3 colonies mesurant 1 - 2 mm de diamètre provenant d'une culture sur gélose au sang de mouton dans 3 mL de bouillon de trypticase-soja et cultiver jusqu'à l'obtention d'une absorbance de 0,6 à 0,800 nm. Préparer des dilutions en série dans une solution saline pour obtenir une suspension bactérienne d'environ 10^6 UFC/mL. Tremper l'écouvillon recommandé avec milieu Stuart liquide (voir la section Matériel nécessaire mais non fourni) dans la suspension bactérienne, placer l'écouvillon dans sa gaine protectrice (pour permettre un contact avec le milieu de transport), laisser reposer durant 5 minutes à température ambiante, puis traiter et analyser le contrôle comme s'il s'agissait d'un échantillon clinique (cf. Préparation des échantillons et Procédure du test BD GeneOhm™ StrepB). Tous les échantillons et tous les contrôles devraient donner des résultats valides (aucun contrôle positif ou négatif invalidé, aucun contrôle interne rejeté).

Cette procédure peut également servir de mesure de contrôle qualité des dispositifs de prélèvement des échantillons. Dans ce cas, le test devrait être fait en triplicata suivant les instructions indiquées dans la notice (cf. Préparation des échantillons), y compris les contrôles. Tous les échantillons et tous les contrôles devraient donner des résultats valides (aucun contrôle positif ou négatif invalidé, aucun contrôle interne rejeté). Pour en savoir davantage sur les contrôles qualité, prière de consulter les documents MM3^9^ et C24 du CLSI^10^.

**Détermination de la sensibilité aux antibiotiques pour les patientes allergiques à la pénicilline**

**Note:** Le tampon d'échantillon ne devrait pas influer sur la viabilité des micro-organismes. Toutefois, l'utilisation du tampon dans les cultures n'a pas fait l'objet d'évaluation. Un second prélèvement peut être obtenu afin de procéder à un test de sensibilité aux antibiotiques. Les laboratoires peuvent choisir de valider d'autres approches. Les techniques de culture et d'épreuve de sensibilité aux antibiotiques sont décrites dans les documents des CDC^2^.

**Interprétation des résultats**

L'algorithme de décision relatif au test BD GeneOhm™ StrepB est intégré dans le logiciel SmartCycler®. L'interprétation des résultats se fait selon les critères suivants :

<table>
<thead>
<tr>
<th>Résultat de l'échantillon</th>
<th>Résultat du CI</th>
<th>Interprétation des résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG (Négatif)</td>
<td>PASS (Accepté)</td>
<td>Aucun ADN de SGB détecté, résultat présumé négatif pour le SGB, ou nombre d'organismes inférieur à la limite de détection de l'essai</td>
</tr>
<tr>
<td>POS (Positif)</td>
<td>NA (Non Applicable)</td>
<td>ADN de SGB détecté, résultat présumé positif pour le SGB</td>
</tr>
<tr>
<td>Unresolved (Non résolu)</td>
<td>FAIL (Rejeté)</td>
<td>Non-résolu - échantillon inhibiteur ou réactif rejeté</td>
</tr>
<tr>
<td>ND (Indéterminé)</td>
<td>ND (Indéterminé)</td>
<td>Indéterminé en raison d'une défaillance du module I-CORE^MD_</td>
</tr>
</tbody>
</table>

Cl : contrôle interne

^A Consultez le manuel d'utilisation du logiciel SmartCycler® Dx pour l'interprétation des codes d'erreur ou d'avertissement.

Un contrôle positif ou négatif invalidé annule toute la série. Dans ces cas, les résultats obtenus dans cette série sont nuls et ne doivent pas être consignés. Les séries invalidées et les codes d'erreur ou d'avertissement de l'appareil sont marqués à l'écran et sur les rapports. Avant de consigner les résultats du test BD GeneOhm™ StrepB, toujours vérifier si la série est valide.

Consulter le manuel d'utilisation du logiciel SmartCycler® Dx pour l'impression des résultats.

**Série invalidée**

En utilisant les lysats congelés, préparer de nouveaux tubes de réaction pour tous les échantillons cliniques. Préparer aussi de nouveaux contrôles.
Échantillons non résolus
Reprendre le test avec le lysat congelé de l’échantillon non résolu. Un cycle de congélation/décongélation diminue l’effet des substances inhibitrices de la PCR.

Échantillons indéterminés en raison d’une défaillance du module I-CORE MD
Reprendre le test avec les lysats congelés d’échantillon correspondants. Consulter le manuel d’utilisation du logiciel SmartCycler® Dx pour l’interprétation des codes d’erreur ou d’avertissement.

Limites du test
• L’efficacité du test a été établie avec le SmartCycler® de Cepheid à partir d’échantillons vagino-rectaux prélevés chez des femmes en phase antépartum ou intrapartum en utilisant des écouvillons simples Copan Venturi TransystemMD avec milieu Stuart liquide. Ainsi, ce test peut être utilisé uniquement avec le SmartCycler®. L’utilisation de systèmes de prélèvement et de transport des échantillons autres que ceux indiqués à la section Matériel requis mais non fourni n’est pas recommandé. Aucune autre source de prélèvements cliniques n’a fait l’objet d’évaluation; les caractéristiques d’efficacité du test pour d’autres types d’échantillons ne sont donc pas connues.

• Des techniques inadéquates de prélèvement d’échantillons, de manipulation et d’entreposage, la présence de substances inhibitrices, des erreurs techniques, un mélange d’échantillons ou un nombre de micro-organismes dans l’échantillon inférieur à la sensibilité analytique du test peuvent donner lieu à des résultats négatifs. Pour éviter des résultats erronés, il est essentiel de respecter scrupuleusement les consignes données dans la présente notice et dans le manuel d’utilisation du logiciel SmartCycler® Dx. Le test devrait être effectué uniquement par du personnel formé à la technique ainsi qu’à l’analyse sur le SmartCycler®.

• Puisque la détection du streptocoque du groupe B est tributaire du nombre de micro-organismes présents dans l’échantillon, l’obtention de résultats fiables dépend de la qualité des techniques de prélèvement, de manipulation et de transport des échantillons.

• Le test BD GeneOhm™ StrepB peut parfois donner des résultats non résolus ou invalides en raison d’un contrôle rejeté, ce qui nécessite une reprise du test et entraîne des retards quant à la transmission des résultats.

• La présence de substances inhibitrices de la polymérase peut également donner des résultats faussement négatifs; le contrôle interne présent dans le mélange réactionnel permet la détection de ces substances.

• La présence de mutations dans les régions complémentaires des sondes ou des amorces peut avoir une incidence sur la détection, surtout si la concentration de micro-organismes est inférieure à 10⁴ organismes. Aucun rapport publié ne fait état de l’absence du gène cfb dans des souches ou des isolats de SGB. Si tel devait être le cas, le test BD GeneOhm™ StrepB donnerait un résultat faussement négatif. Aucun isolat de SGB phénotypiquement négatif à l’égard du facteur CAMP n’a été évalué par le test BD GeneOhm™ StrepB.

• Des résultats positifs n’indiquent pas nécessairement la présence d’un micro-organisme viable. Ils sont toutefois présumptifs de la présence de streptocoques du groupe B.

• Les méthodes de culture à partir du tampon d’échantillon BD GeneOhm™ StrepB n’ont pas fait l’objet d’évaluation. Les laboratoires doivent donc valider leurs propres méthodes de culture ou procéder à un second prélèvement d’échantillon à conserver.

• Les résultats du test BD GeneOhm™ StrepB devraient servir de complément aux observations cliniques et aux renseignements déjà connus du médecin. Le test n’a pas été conçu pour distinguer les personnes porteuses de streptocoque du groupe B des personnes atteintes d’une infection à streptocoque. Les résultats du test peuvent également être affectés par une thérapie antibiotique simultanée. Le test ne peut servir à déterminer le degré de réussite ou d’échec du traitement étant donné que l’ADN peut toujours rester présent même après le traitement antimicrobien.

• Même s’il n’est pas nécessaire de préparer des réactifs et que les principales opérations techniques font appel au pipetage, le respect des bonnes pratiques de laboratoire est essentiel à l’efficacité du test. Compte tenu de la grande sensibilité analytique du test, il faut prendre grand soin de conserver la pureté des réactifs, surtout lorsque plusieurs aliquotes sont prélevées dans un même tube.

• Les bonnes pratiques de laboratoire et le port de gants sont recommandés pour éviter toute contamination des échantillons ou des réactifs.

La méthode de référence était la technique de culture recommandée par les Centers for Disease Control and Prevention, soit une culture microbiologique en milieu liquide sélectif (milieu liquide de Todd-Hewitt enrichi de 15 µg/mL d’acide nalidixique et de 10 µg/mL de colistine, ou de 8 µg/mL de gentamicine et de 15 µg/mL d’acide nalidixique; il existe d’autres préparations commerciales, notamment le bouillon SBM ou Lim Broth), suivie d’une incubation pendant la nuit et d’une sous-culture sur gélose au sang. L’identification spécifique des colonies suggestives de SGB a été faite au moyen de test d’agglutination.

Huit cent quatre-vingt-une (881) femmes ont accepté de participer à l’étude; 78 d’entre elles ont été exclues pour différents motifs : changement d’avis, vrai travail non commencé ou autre écart au protocole. Par conséquent, les caractéristiques d’efficacité du test BD GeneOhm™ StrepB ont été établies à partir des résultats obtenus chez 803 femmes en accouchement. Tous les sujets en phase intrapartum ont été soumis à deux prélèvements vagino-rectaux effectués à l’aide de l’écouvillon recommandé avec milieu Stuart liquide (voir matériel nécessaire mais non fourni), selon la technique recommandée par les CDC : l’un a été analysé selon la technique de culture...

Les caractéristiques d’efficacité du test BD GeneOhm™ StrepB ont été établies dans le cadre d’une étude de recherche prospective, multicentrique; y ont participé cinq établissements dotés d’un service de maternité, dont deux au Canada et trois aux États-Unis. Chaque établissement avait déjà mis en place un programme de dépistage basé sur les cultures. Les tests ont été effectués dans des laboratoires cliniques rattachés à chacun des établissements. Pour être sélectionnées, les femmes devaient fournir un consentement écrit, être en travail et ne pas présenter de contre-indication à l’examen vaginal (ex. : saignement). Il ne devait pas non plus y avoir de signe de placenta praevia, d’indication immédiate de procéder à l’accouchement ou de prise d’antibiotiques au cours de la semaine précédant l’admission. L’étude n’a pas tenu compte du temps écoulé avant l’accouchement.

La méthode de référence était la technique de culture recommandée par les Centers for Disease Control and Prevention, soit une culture microbiologique en milieu liquide sélectif (milieu liquide de Todd-Hewitt enrichi de 15 µg/mL d’acide nalidixique et de 10 µg/mL de colistine, ou de 8 µg/mL de gentamicine et de 15 µg/mL d’acide nalidixique; il existe d’autres préparations commerciales, notamment le bouillon SBM ou Lim Broth), suivie d’une incubation pendant la nuit et d’une sous-culture sur gélose au sang. L’identification spécifique des colonies suggestives de SGB a été faite au moyen de test d’agglutination.

Huit cent quatre-vingt-une (881) femmes ont accepté de participer à l’étude; 78 d’entre elles ont été exclues pour différents motifs : changement d’avis, vrai travail non commencé ou autre écart au protocole. Par conséquent, les caractéristiques d’efficacité du test BD GeneOhm™ StrepB ont été établies à partir des résultats obtenus chez 803 femmes en accouchement. Tous les sujets en phase intrapartum ont été soumis à deux prélèvements vagino-rectaux effectués à l’aide de l’écouvillon recommandé avec milieu Stuart liquide (voir matériel nécessaire mais non fourni), selon la technique recommandée par les CDC : l’un a été analysé selon la technique de culture...

Les caractéristiques d’efficacité du test BD GeneOhm™ StrepB ont été établies dans le cadre d’une étude de recherche prospective, multicentrique; y ont participé cinq établissements dotés d’un service de maternité, dont deux au Canada et trois aux États-Unis. Chaque établissement avait déjà mis en place un programme de dépistage basé sur les cultures. Les tests ont été effectués dans des laboratoires cliniques rattachés à chacun des établissements. Pour être sélectionnées, les femmes devaient fournir un consentement écrit, être en travail et ne pas présenter de contre-indication à l’examen vaginal (ex. : saignement). Il ne devait pas non plus y avoir de signe de placenta praevia, d’indication immédiate de procéder à l’accouchement ou de prise d’antibiotiques au cours de la semaine précédant l’admission. L’étude n’a pas tenu compte du temps écoulé avant l’accouchement.

La méthode de référence était la technique de culture recommandée par les Centers for Disease Control and Prevention, soit une culture microbiologique en milieu liquide sélectif (milieu liquide de Todd-Hewitt enrichi de 15 µg/mL d’acide nalidixique et de 10 µg/mL de colistine, ou de 8 µg/mL de gentamicine et de 15 µg/mL d’acide nalidixique; il existe d’autres préparations commerciales, notamment le bouillon SBM ou Lim Broth), suivie d’une incubation pendant la nuit et d’une sous-culture sur gélose au sang. L’identification spécifique des colonies suggestives de SGB a été faite au moyen de test d’agglutination.

Huit cent quatre-vingt-une (881) femmes ont accepté de participer à l’étude; 78 d’entre elles ont été exclues pour différents motifs : changement d’avis, vrai travail non commencé ou autre écart au protocole. Par conséquent, les caractéristiques d’efficacité du test BD GeneOhm™ StrepB ont été établies à partir des résultats obtenus chez 803 femmes en accouchement. Tous les sujets en phase intrapartum ont été soumis à deux prélèvements vagino-rectaux effectués à l’aide de l’écouvillon recommandé avec milieu Stuart liquide (voir matériel nécessaire mais non fourni), selon la technique recommandée par les CDC : l’un a été analysé selon la technique de culture...
recommandée par les CDC, l’autre, selon le test BD GeneOhm™ StrepB. Les résultats de l’étude figurent aux tableaux 1 à 4.

**Tableau 1.** Résultats obtenus au test BD GeneOhm™ StrepB par rapport à la culture.

<table>
<thead>
<tr>
<th>Méthodes de culture</th>
<th>Test BD GeneOhm™ StrepB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positif</td>
</tr>
<tr>
<td>Méthodes de culture</td>
<td></td>
</tr>
<tr>
<td>Positif</td>
<td>140(^A)</td>
</tr>
<tr>
<td>Négatif</td>
<td>27(^B)</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
</tr>
</tbody>
</table>

\(^A\) Quatorze (14) échantillons d’abord considérés comme négatifs à la culture, se sont avérés positifs après examen; 1 d’entre eux était initialement non résolu mais, à la reprise du test, a donné un résultat positif; 3 échantillons considérés d’abord comme positifs au test BD GeneOhm™ StrepB ont été repris en raison de contrôles invalidés (positif et négatif) et sont demeurés positifs.

\(^B\) Un (1) échantillon considéré d’abord comme positif au test BD GeneOhm™ StrepB a été repris en raison d’un contrôle invalidé et est demeuré positif.

\(^C\) Douze(12) échantillons considérés d’abord comme négatifs au test BD GeneOhm™ StrepB ont été repris en raison d’un contrôle invalidé et sont tous demeurés négatifs; 8 échantillons ayant donné initialement des résultats non résolus se sont révélés négatifs à la reprise du test.

\(^D\) Un (1) échantillon ayant donné initialement un résultat non résolu est resté non résolu à la reprise du test et n’a pas été inclus dans le tableau ci-dessus.

L’examen des échantillons ayant donné des résultats positifs à la culture et négatifs au test BD GeneOhm™ StrepB (n = 9) a révélé la présence d’une charge bactérienne inférieure au seuil de détection du test. De plus, tous les isolats provenant de ces cultures sur gélose positives ont donné des résultats positifs au test BD GeneOhm™ StrepB.

L’examen des échantillons ayant donné des résultats négatifs à la culture et positifs au test BD GeneOhm™ StrepB (n = 27) a révélé que tous contenaient la région ciblée (y compris les régions complémentaires des amorces) du gène *cfb* et que le produit amplifié correspondait à celui attendu avec le test BD GeneOhm™ StrepB.

La prévalence générale de colonisation dans la population à l’étude s’est établie à 18,6%, variant de 9,1% à 28,7 selon les établissements cliniques. Le coefficient de prévision d’un test négatif était de 98,6% (IC à 95% : 97,3% – 99,3%) et le coefficient de prévision d’un test positif, de 83,8% (IC à 95% : 77,4% – 89,1%).

**Tableau 2.** Efficacité clinique du test BD GeneOhm™ StrepB par rapport à la technique de culture recommandée par les CDC.

<table>
<thead>
<tr>
<th>Centre</th>
<th>Sensibilité</th>
<th>Spécificité</th>
<th>Nombre d’échantillons non résolus(^a)</th>
<th>Nombre d’analyses invalides/nombre total d’analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93% (n=15) (68%-100%)(^a)</td>
<td>93% (n=150) (87%-96%)(^a)</td>
<td>5</td>
<td>2/55</td>
</tr>
<tr>
<td>2</td>
<td>88% (n=25) (69%-97%)</td>
<td>100% (n=62) (97%-100%)</td>
<td>0</td>
<td>0/38</td>
</tr>
<tr>
<td>3</td>
<td>99% (n=77) (93-100%)</td>
<td>97% (n=350) (94%-98%)</td>
<td>1</td>
<td>1/56</td>
</tr>
<tr>
<td>4</td>
<td>85% (n=13) (54%-98%)</td>
<td>100% (n=35) (98%-100%)</td>
<td>1</td>
<td>1/21</td>
</tr>
<tr>
<td>5</td>
<td>89% (n=19) (67%-99%)</td>
<td>93% (n=56) (82%-98%)</td>
<td>3</td>
<td>1/22</td>
</tr>
<tr>
<td>Total</td>
<td>94% (n=149) (89%-97%)</td>
<td>96% (n=653) (94% - 97%)</td>
<td>10(^B)</td>
<td>5/192</td>
</tr>
</tbody>
</table>

\(^a\) Intervalle de confiance binomial à 95%.

\(^B\) Tous les échantillons ont donné des résultats non résolus en raison de contrôles internes invalides, indice d’inhibition ou de défaillance des réactifs. Le problème a été résolu pour 9 d’entre eux (sur 10) à la reprise du test.
Tableau 3. Classification des résultats en fonction du temps écoulé entre le prélèvement de l’échantillon et la réalisation du test BD GeneOhm™ StrepB.

<table>
<thead>
<tr>
<th>Temps écoulé (heures)</th>
<th>Culture positive</th>
<th>Culture négative</th>
<th>% concordance (IC à 95 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD GeneOhm™ pos.</td>
<td>BD GeneOhm™ nég.</td>
<td>BD GeneOhm™ nég.</td>
</tr>
<tr>
<td>0 to 4</td>
<td>11</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>4 to 8</td>
<td>32</td>
<td>3</td>
<td>220</td>
</tr>
<tr>
<td>8 to 12</td>
<td>9</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>12 to 24</td>
<td>41</td>
<td>2</td>
<td>143</td>
</tr>
<tr>
<td>24 to 48</td>
<td>35</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>&gt; 48</td>
<td>12</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>9</td>
<td>626</td>
</tr>
</tbody>
</table>

Tous les échantillons avaient une charge bactérienne inférieure au seuil de détection du test BD GeneOhm™ StrepB.

Tous les échantillons contenaient la région ciblée (y compris les régions de liaison des amorces) du gène cfb et le produit amplifié correspondait à celui attendu avec le test BD GeneOhm™ StrepB.

La rupture des membranes n’a pas eu d’effet sur la performance du test BD GeneOhm™ StrepB. La présence ou l’absence de liquide amniotique ou de méconium dans les échantillons prélévés a servi d’indicateur de la rupture des membranes. La sensibilité et la spécificité du test BD GeneOhm™ StrepB n’ont pas varié, selon que les prélèvements aient été effectués en phase antepartum ou intrapartum (tableau 4).


<table>
<thead>
<tr>
<th></th>
<th>Sensibilité (%)</th>
<th>Spécificité (%)</th>
<th>Concordance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antepartum</td>
<td>95% (53/56)</td>
<td>96% (301/315)</td>
<td>95% (354/371)</td>
</tr>
<tr>
<td></td>
<td>(85-99%)</td>
<td>(93-98%)</td>
<td>(93-97%)</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>94% (87/93)</td>
<td>96% (325/338)</td>
<td>96% (412/431)</td>
</tr>
<tr>
<td></td>
<td>(86-98%)</td>
<td>(94-98%)</td>
<td>(93-97%)</td>
</tr>
</tbody>
</table>

Intervalle de confiance binomial à 95%.

Spécificité analytique

L’ADN génomique de 99 souches ATCC représentant 27 espèces de streptocoques, d’autres espèces phylogénétiquement liées à S. agalactiae, d’autres bactéries et levures souvent présentes dans la flore vaginale et rectale ainsi que l’ADN humain ont été testés. Parmi les micro-organismes analysés, 9 présentaient une activité pseudo-CAMP sans posséder le gène cfb. Pour l’ADN microbien, la concentration utilisée était de 1,5 ng (l’équivalent de 2 x 10^5 copies de génome par PCR ou de 10^8 copies de génome par millilitre). Pour l’ADN humain, les concentrations utilisées variaient de 75 à 233 ng (jusqu’à 1,4 x 10^6 copies de génome par réaction ou 10^8 copies du génome par millilitre). La spécificité a été établie à 100%.

Sensibilité analytique

La sensibilité analytique (seuil de détection) du test BD GeneOhm™ StrepB a été déterminée à partir de 12 souches de S. agalactiae représentant 11 sérotypes ou variants connus. Des cultures étalonnées et des ADN génomiques purifiés ont été dilués dans le tampon d’échantillon et testés en cinq exemplaires. Le seuil a été défini comme la plus faible concentration à laquelle tous les réplicats se sont révélés positifs.

Le seuil de détection du test BD GeneOhm™ StrepB à l’égard de S. agalactiae, des sérotypes et des variants Ia, Ib/c, II, Ilc, IIR, III, Ilc, IIR, V et VR varie entre 10 et 50 copies de génome par réaction, avec une médiane de 25 copies. Quant au seuil de détection pour les unités formatrices de colonies (UFC), il varie entre 3 et 9 UFC par réaction. Si l’on tient compte du facteur de dilution inhérent au processus de traitement des échantillons, cela équivaut à une concentration de 10^3 à 10^5 UFC par écouvillon. Le tableau suivant présente en détail la concentration la plus faible à laquelle les cinq réplicats d’un même sous-type ont donné des résultats positifs.
Tableau 5. Seuil de détection pour chacun des sérotypes testés.

<table>
<thead>
<tr>
<th>Sérotype</th>
<th>Copies du génome/réaction</th>
<th>UFC / réaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 12973 (II)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Ia/c</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>VR</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Ia</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Ib/c</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>IIIc</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIc</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

A Pour le sérotype IIc, il y a mésappariement d’une base dans l’une des régions complémentaires des amorces.

Reproductibilité

Un jeu de 10 échantillons simulés (R1 à R10) comportant différentes concentrations de SGB ainsi que deux contrôles, positif et négatif, fournis avec la trousse du test BD GeneOhm™ StrepB ont été testés en triple, sur trois jours différents, dans trois centres différents (10 échantillons + 2 contrôles x 3 tests x 3 jours x 3 centres). Un seul lot de réactifs a été utilisé pour l’étude.

Tableau 6. Résumé des résultats de reproductibilité.

<table>
<thead>
<tr>
<th>Échantillon</th>
<th>Centre 1</th>
<th>Centre 2</th>
<th>Centre 3</th>
<th>Concordance totale</th>
<th>Concordance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Négatif</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Négatif</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Positif faible</td>
<td>3/9</td>
<td>7/9</td>
<td>8/9</td>
<td>18/27</td>
<td>66%</td>
</tr>
<tr>
<td>Positif faible</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positif</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positif</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positif</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positif</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>96%</td>
</tr>
<tr>
<td>Contrôle positif</td>
<td>3/3</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Contrôle négatif</td>
<td>3/3</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Concordance totale</td>
<td>88/96</td>
<td>106/108</td>
<td>107/108</td>
<td>301/312</td>
<td>96.5%</td>
</tr>
</tbody>
</table>

Concordance (%) 91.6 % 98.1 % 99.1 % 96.5%

A Tous les échantillons positifs avaient des concentrations variables en SGB.
B L’échantillon initialement non résolu a donné le résultat prévu à la reprise du test.
C Tous les réplicats ont été testés en une seule série plutôt qu’en trois séries de 10 échantillons et de 2 contrôles.
Vorgesehene Anwendung

Der BD GeneOhm™ StrepB-Test ist ein qualitativer diagnostischer In-Vitro-Test zur raschen Feststellung von Gruppe B Streptokokkus (GBS) DNA in vaginalen/rektalen Proben von Prepartum- oder Intrapartum-Frauen. Der Test, welcher auf dem SmartCycler®-Automatisierten Analysengerät ausgeführt wird, verwendet eine Polymerase-Kettenreaktion (polymerase chain reaction = PCR), um eine von klinischen Proben erworbene cfb-Gensequenz von GBS zu verstärken, und zur fluorogenen, zielorientierten Hybridiierung zum Zweck der Feststellung von der verstärkten DNA.

Der BD GeneOhm™ StrepB-Test kann angewandt werden, um den GBS-Kolonisierungsstatus bei Prepartum- und Intrapartum-Frauen festzustellen.

Zusammenfassung und Erklärung des Tests

Eine vaginale/rektale Probe wird genommen und mit dem empfohlenen Tupfer mit flüssigem Stuart-Medium zum Labor transportiert (siehe Materialien, welche benötigt, aber nicht mitgeliefert werden). Der Tupfer wird in Probenpuffer eluiert; ein Aliquot der Probe wird anschließend lysiert und zu den PCR-Reagenziehen hinzugegeben, welche die GBS-spezifischen Primers enthalten, womit das genetische Ziel der Test (cfb-Gen), falls anwesend, verstärkt wird. Der Test beinhaltet ausserdem eine interne Kontrolle (IC), um PCR-hemmende Proben festzustellen und die Integrität der Prüfreakenziene zu bestätigen. Verstärkte Ziele (cfb-Gen und IC) werden mit Hybridisierungsproben festgestellt, welche durch gelöschte Fluorophoren (Molekular-Beacons) identifiziert sind. Die Verstärkung, die Feststellung der Fluoreszenz, und die Auswertung der Signale werden automatisch von der Cepheid SmartCycler®-Software vorgenommen. Der gesamte Vorgang dauert etwa 45 Minuten.


Warnung

- Der BD GeneOhm™ StrepB-Test liefert keine Anfälligkeitsergebnisse. Zusätzliche Zeit wird benötigt, um Anfälligkeitstests zu kultivieren und auszuführen, welche für Frauen mit Penizillin-Allergien empfohlen würden.
Das Prinzip der Methode


Reagenzien

**BD GeneOhm™ StrepB -Test**

50 Tests

**Probenpuffer (Sample Buffer)**

Tris-EDTA-Puffer

60 x 1 mL

**Lyseröhrenchen (Lysis tube)**

Glasperlen

50 Röhrchen

**Master-Mix (Master mix)**

50 Röhrchen

< 0.001% DNA -Polymerase-Komplex

< 0.001% Interne Kontrolle - nicht infektiöse DNA, enthält GBS-Primer-Bindungssequenzen und eine einzigartige Sequenz zur Probenhybridisierung

< 0.001% Primers

< 0.002% Molekularproben

< 0.05% dATP, dCTP, dGTP, dTTP

Rinder-Serum-Albumin

Kohlehydrat

< 0.005% nicht infektiöse genomische DNA von Streptococcus pneumoniae

**Positive Kontrolle (Positive Control)**

50 Röhrchen

< 0.001% DNA -Polymerase-Komplex

< 0.001% Interne Kontrolle – nicht infektiöse DNA, enthält GBS-Primer-Bindungssequenzen und eine einzigartige Sequenz zur Probenhybridisierung
< 0.001% Primers  
< 0.002% Molekular-Proben  
< 0.05% dATP, dCTP, dGTP, dTTP  
Rinder-Serum-Albumin  
Kohlehydrat  
< 0.001% nicht infektiöse genomische GBS DNA mit dem cfb-Gen

**Negative Kontrolle (Negative Control) 50 Röhrchen**  
< 0.001% DNA-Polymerase-Komplex  
< 0.001% Interne Kontrolle – nicht infektiöse DNA, enthält GBS-Primer-Bindungssequenzen und eine einzigartige Sequenz zur Probenhybridisierung  
< 0.001% Primers  
< 0.002% Molekularproben  
< 0.05% dATP, dCTP, dGTP, dTTP  
Rinder-Serum-Albumin  
Kohlehydrat  
< 0.005% nicht infektiöse genomische DNA von *Streptococcus pneumoniae*

**Verdünnungspuffer (Diluent) 50 x 1 mL**  
Tris-HCl-Puffer  
MgCl₂  
(NH₄)₂SO₄

**Vorsichtsmassnahmen**

_Dieser Test ist nur zum diagnostischen In-Vitro-Gebrauch._

- Das Kit nicht verwenden, wenn das Sicherheitssiegel an der äußeren Verpackung gebrochen ist.
- Reagenzien nicht verwenden, wenn der Schutzbeutel bei Ankunft geöffnet oder beschädigt ist.
- Das Trockenmittel nicht aus dem Master-Mix und den Kontrollen entfernen.
- Reagenzien nicht benutzen, wenn sich im Master-Mix und in den Kontrollen kein Trockenmittel befindet.
- Reagenzien lassen sich nicht zwischen Chargen austauschen.
- Niemals Reagenzien von verschiedenen Röhrchen zusammentun, auch, falls sie in derselben Charge sind.
- Reagenzien nicht nach dem Verfallsdatum anwenden.
- Verschlusskappen nicht unter Reagenzien austauschen, da Verunreinigungen auftreten und Testergebnisse gefährden könnten.
- Um Verunreinigung der Umgebung durch GBS-Amplikone zu vermeiden, das Reaktionsröhrchen nach der Verstärkung nicht öffnen.
- Für jede Probe oder Reagenz eine neue Spitze anwenden.
- Das Ausführen der Test ausserhalb den empfohlenen Zeitspannen kann ungültige Ergebnisse liefern. Testen ausserhalb der angegebenen Zeitspannen sollten wiederholt werden.
- Zusätzliche Kontrollen können getestet werden, je nach den Richtlinien oder Anforderungen von lokalen, staatlichen, provinziellen und/oder Föderations-Vorschriften oder Akkreditierungs-Organisationen.
Proben immer als infektiös und im Einvernehmen mit sicheren Laborvorgängen, wie sie in *Biosafety in Microbiological und Biomedical Laboratories* und im CLSI -Dokument M29 beschrieben sind, behandeln.


Nicht mit dem Mund pipettieren.

In Gegenden, wo Proben oder Satzreagenzien gehandhabt werden, nicht essen, trinken oder rauchen.


**Mitgelieferte Materialien**

- Probenpuffer (*Sample Buffer*)
- Lyserörhrenchen (*Lysis tube*)
- Master-Mix (*Master mix*)
- Positive Kontrolle (PC) (*Positive control*)
- Negative Kontrolle (NC) (*Negative control*)
- Verdünnungspuffer (*Diluent*)
- Proben-Identifizierungsetiketten

**Lagerung, Handhabung und Stabilität**

**Gesammelte Proben**

Proben sollten während dem Transport zwischen 2 °C und 30 °C aufbewahrt werden. Vor Gefrieren und vor zu heissen Temperaturen schützen.

Proben, welche innerhalb von 24 Stunden getestet werden können, können bei Zimmertemperatur aufbewahrt werden; falls nicht, wird es empfohlen, sie kühler zu halten. Proben, welche zwischen 2 °C und 8 °C aufbewahrt werden, bleiben bis zu 6 Tage lang stabil.

**Reagenzien**

**Hinweis:** Die Lagerungszustände müssen die Spezifikationen auf jedem Beutel befolgen. Röhrchen ausserhalb des Schutzbeutels, welche nicht innerhalb der angegebenen Zeit verwendet werden, sollten verworfen werden.

<table>
<thead>
<tr>
<th>Satzbestandteil</th>
<th>Master Mix und Controls (weisse, rote oder grüne Etiketten)</th>
<th>Lysis tube (gelber Verschluss)</th>
<th>Sample Buffer, und Diluent (blauer Verschluss, und schwarzes Bandetikett)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versiegelter Beutel</td>
<td><strong>Temperatur</strong> 2-25 °C</td>
<td><strong>2-25 °C</strong></td>
<td><strong>2-25 °C</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Stabilität</strong> Verfallsdatum</td>
<td><strong>Verfallsdatum</strong></td>
<td><strong>Verfallsdatum</strong></td>
</tr>
<tr>
<td>Geöffneter Beutel 1</td>
<td><strong>Temperatur</strong> 2-8 °C</td>
<td><strong>2-25 °C²</strong></td>
<td><strong>2-25 °C²</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Stabilität</strong> 1 Monat 3</td>
<td><strong>Verfallsdatum</strong></td>
<td><strong>2 Monate 3</strong></td>
</tr>
</tbody>
</table>

1 Wenn das Originalsiegel am Beutel aufgebrochen ist, den Beutel nach jedem Gebrauch sorgfältig mit dem Reissverschluss verschliessen und bei 2-8 °C aufbewahren.

2 Obwohl diese Reagenzien bei Zimmertemperatur aufbewahrt werden können, sollten sie mit ihren begleitenden Reagenzien von derselben Charge bei 2-8 °C aufbewahrt werden.

3 Falls der Beutel nach jedem Gebrauch richtig mit dem Reissverschluss verschlossen wird.

<table>
<thead>
<tr>
<th>Satzbestandteile ausserhalb des Schutzbeutels</th>
<th>Master Mix und Controls (weisse, rote oder grüne Etiketten)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperatur</strong></td>
<td>15-25 °C</td>
</tr>
<tr>
<td><strong>Stabilität</strong></td>
<td>2 Stunden</td>
</tr>
</tbody>
</table>
Materialien, welche benötigt, aber nicht mitgeliefert werden

- **BBL MC CultureSwab MC Liquid Stuart** (n° 220099 au catalogue Becton Dickinson), **Écouvillons Copan Transystem MC Liquid Stuart** (n° 141.CUSE au catalogue Copan Italia International), **Copan Venturi Transystem MC Liquid Stuart** (n° 141.C.US au catalogue Copan Diagnostics Inc.), **HealthLink TransPorter MC single Liquid Stuart** (n° 4432 au catalogue HealthLink)
- **Vortex Genie 2** (Fisher) mit Mikroröhrchenhalter oder ähnlichem; zum Bearbeiten von mehrfachen Proben, Adapter mit mehrfachen Halterungen können angewandt werden
- **Mikropipetten** (Genauigkeit zwischen 1-50 µL)
- **Sterile DNase-freie Pipettenspitzen mit Filterblockierung oder positiver Verdrängung**
- **Scheren**
- **Gaze**
- **Einweg-Handschuhe**, ungepudert
- **Mikrozentrifuge** für Zentrifugierung bei niedriger Geschwindigkeit
- **Trockener Erhitzungsblock für 1.5 mL -Röhrchen oder Wasserbad**
- **Eis oder Kühlblock für 1.5 mL -Röhrchen**
- **Stoppuhr oder Timer**
- **SmartCycler® -Startersystem** mit Diagnostik-Software (Verarbeitungsblock, Gebrauchsanleitung, Zusatzteile, und Desktop-Computer) (Cepheid, Sunnyvale, CA, USA)

Gebrauchsanweisungen

**Probensammlung**

Um eine genügende Probe zu erhalten, muss das Arbeitsverfahren zur Probensammlung genau befolgt werden.

Mit dem empfohlenen Tupfer mit Flüssigem Stuart-Medium (siehe Materialien, welche benötigt, aber nicht mitgeliefert werden) werden vaginal-rektale Proben nach dem folgenden Verfahren genommen:

1. Überschüssiges Sekret oder Ausfluss von der Vaginalgegend wegwischen;
2. Den Tupfer vorsichtig in das **untere Drittel der Vagina** schieben, und Proben von den Sekreten der Schleimhäute entnehmen;
3. Denselben Tupfer vorsichtig etwa 2.5 cm durch den analen Schliessmuskel schieben und leicht rotieren, um eine Probe aus den Analkrypten zu entnehmen;
4. Den Tupfer in seinen Behälter zurücktun;
5. Den Behälter etikettieren;
7. Im Labor alle Proben bis zum Testen bei Zimmertemperatur aufbewahren (falls innerhalb von 24 Stunden nach Entnahme);

**Probenvorbereitung**

**Hinweis:** Ein Sample Buffer-Röhrchen (Probenpuffer, **blauer Verschluss**) und ein Lysis tube (Lyseröhrchen, **gelber Verschluss**) werden für jede **Probe**, die getestet werden soll, benötigt. Die benötigte Anzahl von Röhrchen aus dem Schutzbeutel, überschüssige Luft hinausdrücken und den Beutel rasch mit dem Reissverschluss schliessen.

1. **Das Sammelgerät (Tupfer) in ein Probenpuffer-Röhrchen geben (blauer Verschluss).**
   Den Probenpuffer auf dem Verschluss und/oder dem Röhrenetikett identifizieren.
2. **Den Tupferstab brechen und das Röhrchen fest schliessen.**
   Den Tupfer am Stab nahe dem Röhrenrand halten (Gaze anwenden, um das Risiko von Verunreinigung auf ein Mindestmass zu halten). **Den Tupfer ein paar Millimeter (mm) vom Boden des Röhrcens abheben und den Stab gegen den Rand des Röhrcens drücken, um ihn zu...**
brechen. **Alternativmethode:** Den Stab mit sauberen Scheren durchschneiden. Sicherstellen, dass der Verschluss dicht schliesst.

3. **5 Minuten lang stehen lassen.**

4. **Vortex:** bei Hochgeschwindigkeit, 15 Sekunden.  
Um mehrfache Proben zu bearbeiten, kann man Adapter mit mehrfachen Halterungen anwenden.

5. **50 µL der Zellensuspension in das Lyseröhrchen transferieren (gelber Verschluss); fest verschliessen.**

   Für jede Probe eine neue Mikropipettenspitze anwenden.

6. **Vortex:** bei Hochgeschwindigkeit, 5 Minuten.  
Um mehrfache Proben zu bearbeiten, kann man Adapter mit mehrfachen Halterungen anwenden.

7. **Das Lyseröhrchen kurz zentrifugieren (Quick-Spin).**  
Bei niedriger Geschwindigkeit für 2 bis 5 Sekunden, um den Inhalt zum Boden des Röhrchens zu bringen.

8. **Bei 95 ± 2°C 2 Minuten lang erhitzen.**  
Einen trockenen Erhitzungsblock für 1,5 mL-Röhrchen oder ein Wasserbad anwenden.

9. **Das Lyseröhrchen auf Eis oder einen Kühlblock stellen.**

**BD GeneOhm™ StrepB -Testvorgang**

**Hinweis:** Ein Röhrchen **Master Mix (Master-Mix)**, **SmartCycler® -Röhrchen mit einem weißen Etikett** wird für jede zu testende Probe benötigt. Ein **Positive control tube (Positive Kontrolle, rotes Etikett)** und ein **Negative control tube (Negative Kontrolle grünes Etikett)** werden für jeden Prüfvorgang benötigt. Ein Röhrchen mit Diluent (Verdünnungspuffer, **Eitkett mit schwarzen Streifen**) wird für die Aufbereitung von etwa 40 PCR-Reaktionen benötigt. Die benötigte Anzahl von Röhrchen aus dem Schutzbeutel nehmen, überschüssige Luft hinausdrücken, und den Beutel rasch mit dem Reissverschluss verschliessen.

Nur genug SmartCycler-Röhrchen vorbereiten, um die verfügbaren I-CORE®-Module am SmartCycler®-Instrument zu füllen.

1. **Die Master-Mix und die Positive Kontrolle tubes und Negative Kontrolle tubes zum Testen auf den SmartCycler® Kühlblock stellen.**

   Die Master-Mix tubes (weisess Etikett) auf dem Verschluss mit den Probenidentifizierungsetiketten identifizieren, welche mit dem Satz mitgeliefert werden.

2. **Die Master-Mix und die Positive Kontrolle tubes und Negative Kontrolle tubes öffnen.**


3. **25 µL des Verdünnungspuffers (schwarzes Etikett) zu allen Röhrchen hinzugeben; das Master-Mix tube teilweise verschliessen.**

   Das Verdünnungspuffer in den Vorratsbehälter (oberer Teil) von jedem Röhrchen geben.

4. **1,5 µL von jedem Lysat in ein verschiedenes Master-Mix tube geben und das Röhrchen fest verschliessen.**


5. **Die Positive Kontrolle tubes und Negative Kontrollen tubes schliessen.**

   **Die Negative Kontrolle sollte die letzte Probe sein, welche für eine bestimmte Test fertiggestellt wird (d.h., alle Proben laufen gleichzeitig im SmartCycler®).**

6. **Alle Reaktionsröhrchen 5-10 Sekunden lang zentrifugieren.**

   Die besonders angepasste Mikrozentrifuge verwenden, welche mit dem SmartCycler®-Instrument geliefert wird.
   Die verbleibenden Lysate sollten zum späteren Gebrauch bei -20 ± 5 °C eingefroren werden, falls nötig.

8. Unmittelbar bevor man die Röhrchen ins Instrument lädt, DEN KÜHLBLOCK MIT DEN RÖHRCHEN 5-10 Sekunden lang IM VORTEXGERÄT WIRBELN.

   Bei Bedarf in der SmartCycler® Dx -Software-Bedienungsanleitung nachschlagen. Sie sollten die Identifizierungsparameter für die Proben eingeben, bevor Sie den Durchlauf starten.

   Die Positive und Negative Kontrollen in ihren richtigen Positionen einschieben (siehe den Abschnitt “Qualitätskontrolle”). Sämtliche Röhrchen fest an ihren Platz herunterdrücken.


Qualitätskontrolle

Positive und negative Kontrollen

Eine positive Kontrolle und eine negative Kontrolle müssen für jeden Testsatz, welcher durch den SmartCycler® läuft, verarbeitet werden. Die Software weist automatisch die Positionen der Kontrollen am Instrument zu (siehe die SmartCycler® Dx -Software-Bedienungsanleitung).

Proben-Verarbeitungskontrollen


3 Kolonien von 1-2 mm Grösse aus einem frischen Schafsblut-Agarplatte in 3 mL tryptischer Sojabrühe transferieren, und bis zu einem OD von 0.6 bei 600 nm wachsen lassen. Serienverdünnungen in Salzlösung aufberuten, um eine bakterielle Suspendierung von etwa 10⁶ CFU/mL zu erhalten. Den empfohlenen Tupfer mit Flüssigem Stuart-Medium (siehe Materialien, welche benötigt, aber nicht mitgeliefert werden) in die bakterielle Suspendierung tauchen, den Tupfer in seinen Behälter zurücktun (um Kontakt mit dem Transportmedium zu ermöglichen), bei Zimmertemperatur 5 Minuten stehenlassen, und dann als eine klinische Probe verarbeiten und testen (siehe die Abschnitte "Probenvorbereitung" und "BD GeneOhm™ StrepB-Satzvorgang"). Sämtliche Proben und Kontrollen sollten gültige Ergebnisse liefern (keine ungültigen positiven oder negativen Kontrollen und keine verfehlte interne Kontrolle).


Der Anwender kann generelle QC-Anleitungen in CLSI MM3⁹ und C24¹⁰ auffinden.
Antimikrobieller Anfälligkeitstest für Patienten mit Penicillin-Allergien


Auswertung der Ergebnisse

Der Entscheidungs-Algorithmus für den BD GeneOhm™ StrepB -Satz ist in der SmartCycler® -Software eingebettet. Die Satzergebnisse werden nach den folgenden Kriterien bewertet:

<table>
<thead>
<tr>
<th>Berichtetes Tests-ergebnis</th>
<th>Berichtetes IC-Ergebnis</th>
<th>Interpretation des Ergebnisses</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG (NEG)_</td>
<td>PASS (BESTANDEN)</td>
<td>Keine GBS DNA gefunden, angenommen als negativ auf GBS, oder die Anzahl der Organismen könnte sich unterhalb der Grenze für den Test befinden</td>
</tr>
<tr>
<td>POS (POS)</td>
<td>NA (NZ)</td>
<td>GBS DNA festgestellt, angenommen als positiv auf GBS</td>
</tr>
<tr>
<td>Unresolved (Ungelöst)</td>
<td>FAIL (VERFEHLT)</td>
<td>Ungelöst - hemmende Probe oder Reagenzdefekt</td>
</tr>
<tr>
<td>ND (NF)</td>
<td>ND (NF)_</td>
<td>Nicht festgestellt, wegen I-Core®-Modulfehlschlag (mit Warnungs- oder Fehlerkoden³)</td>
</tr>
</tbody>
</table>

IK = Interne Kontrolle; NZ = nicht zutreffend; NF = nicht festgestellt.
³ Lesen Sie in der SmartCycler® Dx-Software-Gebrauchsanleitung über die Interpretation von Warnungs- und Fehlerkoden nach.


Ungültiger Prüfdurchlauf
Mit gefrorenem Lysat für alle klinischen Proben neue Reaktionsröhrchen in diesem Prüfdurchlauf erstellen, und auch neue Kontrollröhrchen.

Ungelöste Proben
Den Test mit der entsprechenden gefrorenen Lysatprobe wiederholen. Es ist gezeigt worden, dass die Wirkung des Gefrier- und Tauzyklus PCR-hemmende Substanzen reduziert.

Probe wegen Fehlfunktion des I-CORE®-Moduls nicht festgestellt

Einschränkungen des Verfahrens


- Negative Testergebnisse können aus diesen Gründen resultieren: Durch unrichtige Probenahme, Handhabung oder Lagerung, die Anwesenheit eines Hemmstoffs, technische Fehler, Probenverwechslung, oder weil die Anzahl der Organismen in der Probe unterhalb der analytischen

- Da die Detektion von Gruppe B *Streptococcus* von der Anzahl der Organismen in der Probe abhängt, hängen verlässliche Ergebnisse von der richtigen Entnahme, Handhabung und Lagerung der Proben ab.

- Die Ergebnisse des BD GeneOhm™ StrepB-Tests sind manchmal wegen einer ungültigen Kontrolle ungelöst oder ungestört. Dann wird erneutes Testen erforderlich, was zu einer Verzögerung im Erhalten der Ergebnisse führen kann.

- Falsche Negative können auch wegen der Anwesenheit von Polymerase-Hemmstoffen auftreten; die interne Kontrolle in der Master-Mix gestattet die Detektion von solchen Substanzen.

- Mutationen in Primer- oder Probe-Bindungsregionen können die Detektion beeinflussen. Das kann besonders zutreffen, wenn weniger als 10⁴ Organismen anwesend sind. Es gibt keine publizierten Berichte über GBS-Stämme oder Isolate, welche den *cfb*-Gen nicht besitzen. Wenn ein solcher Fall stattfände, würde der BD GeneOhm™ StrepB-Test ein falsches negatives Ergebnis liefern. Es sind keine phenotypisch CAMP-negativen GBS-Isolate mit dem BD GeneOhm™ StrepB-Test bewertet worden.

- Ein positives Testergebnis zeigt nicht unbedingt die Anwesenheit von lebensfähigen Organismen an. Es zeigt allerdings die vermutliche Anwesenheit von Gruppe B *Streptococcus* an.

- Kulturmethoden im BD GeneOhm™ StrepB-Probenpuffer sind nicht bewertet worden. Laboratorien müssen ihre eigenen Kulturmethoden validieren oder eine zweite Probe als Reserve nehmen.


- Obwohl keine Reagenzien vorbereitet werden müssen und die wesentlichen technischen Handlungen aus Pipettieren bestehen, sind gute Labortechniken für die richtige Funktion dieser Test unerlässlich. Wegen der hohen analytischen Empfindlichkeit dieses Tests muss gross Sorge getragen werden, um die Reinheit von allen Reagenzien zu erhalten, besonders in Fällen, worin mehrfache Aliquote aus einem Röhrchen entnommen werden.

- Gute Laborgewohnheiten und der Gebrauch von Handschuhen werden empfohlen, um Verunreinigungen der Proben oder Reagenzien zu vermeiden.

**Störsubstanzen**


**Erwartete Werte**

Ungefähr 10% bis 30% von schwangeren Frauen haben GBS-Kolonisierung in der Vagina oder im Rektum². GBS-Kolonisierung kann vorübergehend, chronisch oder periodisch sein. Kulturtests auf GBS in Vagina und Rektum späts in der Schwangerschaft, im Laufe der vorgeburtlichen Gesundheitspflege, kann feststellen, welche Frauen wahrscheinlich zur Zeit der Geburt GBS-Kolonisierung haben. In der

Insgesamt hatten 10.2% dieser Frauen Antepartum-Kulturergebnisse, welche sich von den Intrapartum-Kulturergebnissen unterschieden, und 11.6% hatten Antepartum-Kulturergebnisse, welche sich von den BD GeneOhm™ StrepB-Intrapartum-Ergebnissen unterschieden. In anderen Studien wurden Empfindlichkeiten von 87%11 (83-92% CI) und 69%12 (57-79% CI) und Spezifitäten von 96%11 (95-98% CI) und 92%12 (89-94% CI) bei spät vorgeburtlichen Kulturen zur Identifizierung des Kolonisierungszustandes bei Geburt berichtet.

Leistungscharakteristika

Klinische Leistungen


Die angewandte Bezugsmethode war die Kulturtechnik, welche von Centers for Disease Control and Prevention [Zentren für Krankheitskontrolle und Vorbeugung], empfohlen wurde, namentlich mikrobiologische Kultur in einem selektiven Brühmedium (Todd-Hewitt Brühemedia, mit 15 µg/mL Nalidixinsäure und 10 µg/mL of Colistin ergänzt, oder alternativ mit 8 µg/mL Gentamizin und 15 µg/mL Nalidixinsäure; andere kommerziell erhältlichen Medien sind z.B. SBM-Brühe oder Lim-Brühe), gefolgt von Inkubation und Subkultur auf ein festes Blutagar-Medium. Die spezifische Identifizierung, welche GBS andeutete, wurde mit Platten-Zusammenballungstests ausgeführt.


Tabelle 1. Ergebnisse, welche mit dem BD GeneOhm™ StrepB -Test erhalten wurden, im Bezug auf die Kulturtechnik.

<table>
<thead>
<tr>
<th>BD GeneOhm™ StrepB -Test</th>
<th>Positiv</th>
<th>Negativ</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulturtechnik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positiv</td>
<td>140A</td>
<td>9</td>
<td>149</td>
</tr>
<tr>
<td>Negativ</td>
<td>27B</td>
<td>626C</td>
<td>653</td>
</tr>
<tr>
<td>Gesamt</td>
<td>167</td>
<td>635</td>
<td>802D</td>
</tr>
</tbody>
</table>

A Vierzehn (14) Proben waren zuerst kulturnegativ, zeigten sich aber nach einer Untersuchung als kulturpositiv; 1 von 14 war zuerst ungelöst, gab aber nach erneutem Testen ein positives Ergebnis; 3 Proben, welche sich zuerst mit dem BD GeneOhm™ StrepB -Test als positiv zeigten, wurden wegen ungültigen Kontrollen (positiv und negativ) erneut getestet und zeigten sich als positiv.

B Eine (1) Probe, welche sich zuerst mit dem BD GeneOhm™ StrepB -Test als positiv zeigte, wurde wegen einer ungültigen Kontrolle erneut getestet und zeigte sich wiederum als positiv.

C Zwölf (12) Proben, welche sich zuerst mit dem BD GeneOhm™ StrepB -Test als negativ zeigten, wurden wegen einer ungültigen Kontrolle erneut getestet und zeigten sich alle wiederum als negativ; 8 Proben, welche zuerst ein ungelöstes Ergebnis zeigten, zeigten nach erneutem Testen ein negatives Ergebnis.

D Eine (1) Probe, welche zuerst ein ungelöstes Ergebnis zeigte, blieb nach erneutem Testen ungelöst und wurde nicht in die obige Tabelle eingeschlossen.
Die Untersuchung von Proben, welche kulturpositive/BD GeneOhm™ StrepB-negative Ergebnisse lieferten (n=9) zeigten, dass sämtliche Proben eine bakterielle Last unter der Detektionsgrenze von BD GeneOhm™ StrepB hatten. Es wurde ausserdem gezeigt, dass die Isolate, welche von den kulturpositiven Platten erhalten wurden, mit BD GeneOhm™ StrepB positive Ergebnisse zeigten.

Die Untersuchung von Proben, welche kulturnegative / BD GeneOhm™ StrepB-positive Ergebnisse lieferten (n=27), zeigten, dass sämtliche Proben die richtige Zielregion (einschliesslich Primer-Bindungsregionen) des cfb-Gens enthielten, und dass das verstärkte Produkt dasselbe war, welches mit BD GeneOhm™ StrepB erwartet wurde.

Die Gesamtprävalenz der Studienbevölkerung betrug 18.6% über einen Bereich von 9.1% bis 28.7% bei den verschiedenen klinischen Stellen. Der negative Vorhersagewert betrug 98.6% (95% CI, 97.3% - 99.3%), und der positive Vorhersagewert betrug 83.8% (95% CI, 77.4% - 89.1%).

**Tabelle 2.** Klinische Leistung des BD GeneOhm™ StrepB -Tests im Bezug auf die CDC-empfohlene Kulturtechnik.

<table>
<thead>
<tr>
<th>Stelle</th>
<th>Klinische Empfindlichkeit</th>
<th>Klinische Spezifität</th>
<th>Anzahl der ungelösten Proben</th>
<th>Ungültig/ Gesamt-anzahl der Durchläufe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stelle 1</td>
<td>93% (n=15) (68%-100%)(^a)</td>
<td>93% (n=150) (87%-96%)(^a)</td>
<td>5</td>
<td>2/55</td>
</tr>
<tr>
<td>Stelle 2</td>
<td>88% (n=25) (69%-97%)</td>
<td>100% (n=62) (97%-100%)</td>
<td>0</td>
<td>0/38</td>
</tr>
<tr>
<td>Stelle 3</td>
<td>99% (n=77) (93-100%)</td>
<td>97% (n=350) (94%-98%)</td>
<td>1</td>
<td>1/56</td>
</tr>
<tr>
<td>Stelle 4</td>
<td>85% (n=13) (54%-98%)</td>
<td>100% (n=35) (98%-100%)</td>
<td>1</td>
<td>1/21</td>
</tr>
<tr>
<td>Stelle 5</td>
<td>89% (n=19) (67%-99%)</td>
<td>93% (n=56) (82%-98%)</td>
<td>3</td>
<td>1/22</td>
</tr>
<tr>
<td>Gesamt</td>
<td>94% (n=149) (89%-97%)</td>
<td>96% (n=653) (94%-97%)</td>
<td>10(^b)</td>
<td>5/192</td>
</tr>
</tbody>
</table>

\(^a\) Binomische 95%-Sicherheitsintervalle.

\(^b\) Sämtliche Proben waren wegen fehlgeschlagenen internen Kontrollen ungelöst, welche Hemmung oder Reagenzdefekte vermuten liessen. Neun (9) von 10 wurden nach erneutem Testen gelöst.

**Tabelle 3.** Schichtung der Ergebnisse je nach der Zeit, welche zwischen der Probeentnahme und dem Testen mit dem BD GeneOhm™ StrepB -Test verging.

<table>
<thead>
<tr>
<th>Vergangene Zeit (Stunden)</th>
<th>kulturpositiv</th>
<th>kulturnegativ</th>
<th>% Übereinstimmung (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD GeneOhm™</td>
<td>BD GeneOhm™</td>
<td>BD GeneOhm™</td>
</tr>
<tr>
<td>positiv</td>
<td>negativ</td>
<td>positiv</td>
<td>negativ</td>
</tr>
<tr>
<td>0 bis 4</td>
<td>11</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>4 bis 8</td>
<td>32</td>
<td>3</td>
<td>220</td>
</tr>
<tr>
<td>8 bis 12</td>
<td>9</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>12 bis 24</td>
<td>41</td>
<td>2</td>
<td>143</td>
</tr>
<tr>
<td>24 bis 48</td>
<td>35</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>&gt; 48</td>
<td>12</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Gesamt</td>
<td>140</td>
<td>9(^a)</td>
<td>626</td>
</tr>
</tbody>
</table>

\(^a\) Sämtliche Proben hatten eine bakterielle Last unterhalb der Detektionsgrenze von BD GeneOhm™ StrepB.

\(^b\) Sämtliche Proben enthielten die richtige Zielregion (einschliesslich der Primer-Bindungsregionen) des cfb-Gens, und das verstärkte Produkt war dasselbe, welches mit BD GeneOhm™ StrepB erwartet wurde.


<table>
<thead>
<tr>
<th></th>
<th>Empfindlichkeit</th>
<th>Spezifität</th>
<th>% Übereinstimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Antepartum</strong></td>
<td>95% (53/56) (85-99%)&lt;sup&gt;A&lt;/sup&gt;</td>
<td>96% (301/315) (93-98%)</td>
<td>95% (354/371) (93-97%)</td>
</tr>
<tr>
<td><strong>Intrapartum</strong></td>
<td>94% (87/93) (86-98%)</td>
<td>96% (325/338) (94-98%)</td>
<td>96% (412/431) (93-97%)</td>
</tr>
</tbody>
</table>

<sup>A</sup> Binomische 95%-Sicherheitsintervalle.

### Analytische Spezifität

Genomische DNA von 99 ATCC-Stämmen, welche 27 Spezies von Streptokokken darstellen, andere Spezies, welche phylogenetisch mit S. agalactiae verwandt sind, andere Bakterien und Hefen, welche normalerweise in der vaginalen und rektalen Flora vorgefunden werden, und menschliche DNA wurden getestet. Unter ihnen gab es 9 Organismen, bei welchen das cfb-Gen noch nicht berichtet worden war, aber welche CAMP-ähnliche Aktivitäten zeigten. Für mikrobielle DNA wurden 1.5 ng (2x10<sup>5</sup> gleiche Genomkopien pro PCR-Reaktion oder 10<sup>8</sup> gleiche Genomkopien/mL) angewandt. Für menschliche DNA wurden 75 bis 233 ng (bis zu 1.4x10<sup>5</sup> Genomkopien pro Reaktion oder 10<sup>8</sup> Kopien/mL) angewandt. Die Spezifität war 100%.

### Analytische Empfindlichkeit


### Tabelle 5. LOD, welches für jeden getesteten Serotyp erhalten wurde.

<table>
<thead>
<tr>
<th>Serotyp</th>
<th>Genomkopien /Reaktion</th>
<th>CFU /Reaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 12973 (II)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Ia/c</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>VR</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Ia</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Ib/c</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>IIIc</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIc&lt;sup&gt;A&lt;/sup&gt;</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

<sup>A</sup> für Serotyp IIc, es gibt eine Fehlanpassung in einer Primer-Bindungsregion.
Reproduzierbarkeit

Eine Gruppe von 10 simulierten Proben (R1 bis R10) mit unterschiedlichen Konzentrationen von GBS und den beiden Kontrollen (positiv und negativ), welche mit dem BD GeneOhm™ StrepB -Test mitgeliefert wurden, wurde dreifach an drei verschiedenen Tagen an drei Stellen getestet (10 Proben plus 2 Kontrollen getestet, X 3 X 3 Tagen X 3 Stellen). Eine Charge der Reagenz wurde für diese Studie verbraucht.


<table>
<thead>
<tr>
<th>Proben-ID</th>
<th>Stelle 1</th>
<th>Stelle 2</th>
<th>Stelle 3</th>
<th>Gesamte Übereinstimmung</th>
<th>Gesamte % Übereinstimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>negativ</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>negativ</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>schwach positiv</td>
<td>3/9</td>
<td>7/9</td>
<td>8/9</td>
<td>18/27</td>
<td>66%</td>
</tr>
<tr>
<td>schwach positiv</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>positiv</td>
<td>8/9</td>
<td>9/9(^B)</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>positiv</td>
<td>9/9(^A)</td>
<td>9/9(^B)</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>positiv</td>
<td>9/9(^A)</td>
<td>9/9(^B)</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>stark positiv</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>stark positiv</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>stark positiv</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>pos Kontrolle</td>
<td>3/3(^C)</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>neg Kontrolle</td>
<td>3/3(^C)</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Gesamte Übereinstimmung</td>
<td>88/96</td>
<td>106/108</td>
<td>107/108</td>
<td>301/312</td>
<td>96.5%</td>
</tr>
<tr>
<td>% Übereinstimmung</td>
<td>91.6%</td>
<td>98.1%</td>
<td>99.1%</td>
<td>96.5%</td>
<td></td>
</tr>
</tbody>
</table>
Indicaciones de uso

La prueba BD GeneOhm™ StrepB es una prueba diagnóstica cualitativa in vitro para la detección rápida de ADN de Streptococcus del grupo B (SGB) en muestras vaginales/rectales de mujeres, tomadas antes o durante el parto. La prueba se realiza en un SmartCycler® y utiliza la reacción en cadena de la polimerasa (PCR, por sus siglas en inglés) para la amplificación de una secuencia del gen cfb de SGB obtenida de muestras clínicas, y una hibridación fluorogénica específica para la diana que permite la detección del ADN amplificado.

La prueba BD GeneOhm™ StrepB puede utilizarse para establecer el estado de colonización de SGB en mujeres antes y durante el parto.

Resumen y explicación de la prueba

Se obtiene una muestra vaginal/rectal y se transporta al laboratorio utilizando una torunda recomendada en medio Stuart líquido (consulte la sección Material necesario pero no suministrado). La torunda se eluye en el tampón de muestras y a continuación una alicuota de la muestra se lisa y se agrega a los reactivos de PCR que contienen los cebadores específicos de SGB utilizados para amplificar la diana genética de la prueba (gen cfb), si está presente. La prueba además incluye un control interno (CI) para detectar muestras inhibidoras de PCR y para confirmar la integridad de los reactivos de la prueba. Las dianas amplificadas (gen cfb y CI) se detectan con sondas de hibridación marcadas con fluoróforos que no emiten fluorescencia (marcadores moleculares). La amplificación, la detección y la interpretación de las señales son realizadas automáticamente por el software Cepheid SmartCycler®. El procedimiento completo dura unos 45 minutos.

Recientemente se ha observado una disminución en la incidencia de la enfermedad estreptocócica del grupo B perinatal en los Estados Unidos, debido al uso de profilaxis con antibióticos para la prevención de enfermedades de SGB1,2. Una encuesta nacional, realizada entre los miembros del Colegio Americano de Obstetricia y Ginecología (ACOG) en 2000, concluyó que el 73,5% de los encuestados utilizó una estrategia de detección sistemática, lo que mostró que la detección sistemática antes del parto contribuyó a una disminución del 70% en enfermedades por SGB de aparición temprana, desde que se implantaron las pautas de los Centros para el Control y la Prevención de Enfermedades (CDC) en 19963. Además, en casos de partos de corta duración, la disponibilidad de los resultados de las pruebas de detección sistemática antes del parto permite la administración de antibióticos por vía intravenosa lo más pronto posible tras el ingreso (< 5 horas). Basándose en los métodos diagnósticos disponibles en la actualidad, los CDC de EEUU recomiendan la realización de un examen colectivo basado en un cultivo prenatal para observar la posible colonización de vaginal y rectal de SGB en todas las mujeres entre la 35 y la 37 semanas de gestación3.

Aunque esta recomendación se fundamenta en el fuerte efecto protector documentado de la estrategia del examen colectivo basado en cultivo prenatal, frente a la estrategia basada en el riesgo, la detección sistemática antes del parto tiene limitaciones4,5. A veces, el médico no conoce los resultados de las pruebas de detección precoz en el momento del parto, el estado de colonización puede cambiar entre la prueba y el parto, y algunas mujeres no son sometidas a dichas pruebas antes del parto3,4. En cada uno de estos casos es posible que estas mujeres no sean tratadas adecuadamente frente a la colonización por SGB, por lo que aumenta el riesgo de contagio para los recién nacidos. Una prueba sensible y rápida de detección sistemática de SGB, que pueda proporcionar resultados durante el parto a tiempo para administrar la profilaxis con antibióticos, sería beneficiosa para varios grupos de mujeres, incluidas aquellas que han recibido una atención prenatal inadecuada, las mujeres cuyos resultados de la detección sistemática prenatal son desconocidos en el momento del parto y las mujeres con amenaza de parto prematuro.

Advertencia

- El uso de BD GeneOhm™ StrepB para la detección sistemática durante el parto no debería excluir el uso de otras estrategias (p.ej. pruebas prenatales). Los resultados de BD GeneOhm™ StrepB durante el parto son útiles para identificar candidatas para la profilaxis con antibióticos durante el parto, cuando puede disponerse de los resultados a tiempo para administrar antibióticos por vía intravenosa, al menos 4 horas antes del parto.

- La prueba BD GeneOhm™ StrepB no proporciona resultados de sensibilidad a los antibióticos. Se necesita más tiempo para cultivar y realizar antibiogramas que serían recomendables para las mujeres alérgicas a la penicilina.
Principio de procedimiento

La diana genética de la prueba BD GeneOhm™ StrepB es el gen \textit{cfb}. Este gen codifica para el factor CAMP, una proteína extracelular capaz de difundir, presente prácticamente en todas las cepas aisladas de SGB. La detección del factor CAMP se utiliza para la presunta identificación de SGB por métodos bioquímicos. Las características fenotípicas y moleculares mostraron que el gen \textit{cfb} está bien conservado dentro de esta especie\textsuperscript{5,6}. Se han desarrollado cebadores complementarios a las regiones conservadas y específicas del gen para amplificar un fragmento de 154 bp del gen \textit{cfb}.

Se recoge una muestra vaginal/rectal y se transporta al laboratorio utilizando la torunda recomendada en medio Stuart líquido (consulte la sección Material necesario pero no suministrado. La torunda se coloca en la solución tampón a fin de eluir su contenido y una alicuota se transfiere al tubo de lisis. La lisis se produce por una combinación de mecanismos físicos y químicos en menos de 15 minutos. Se agrega una muestra del lisado directamente a los reactivos de PCR contenidos en el tubo de reacción del SmartCycler®, y se analiza con el instrumento SmartCycler®, un termociclador de fluorescencia a tiempo real y de acceso aleatorio.

En las muestras que contienen SGB, la región de 154 bp del gen \textit{cfb} se amplificará y se detectará. Asimismo se producirá la amplificación del CI, un fragmento de ADN de 180 bp que consiste en una secuencia de 134 bp no encontrada en SGB, flanqueada por la secuencia de cada uno de los dos cebadores específicos de SGB.

Las dianas amplificadas de ADN se detectan con marcadores moleculares, oligonucleótidos monocatenarios en forma de horquilla que disponen de un desactivador de fluorescencia (quencher) en un extremo y de un colorante indicador fluorescente (fluoróforo) en el otro. Cuando la diana está ausente, se desactiva la fluorescencia. Cuando la diana está presente, la estructura de horquilla se abre con la hibridación del marcador, lo que resulta en la emisión de fluorescencia. Para la detección de amplicones de SGB, el marcador molecular contiene el fluoróforo FAM en el extremo 5' y el fragmento desactivador no fluorescente de DABCYL en el extremo opuesto del oligonucleótido. Para la detección de amplicones de CI, el marcador molecular contiene el fluoróforo TET en el extremo 5' y el fragmento desactivador de DABCYL en el extremo 3'. Cada híbrido diana-marcado emite fluorescencia a una longitud de onda característica del fluoróforo utilizado en el marcador molecular particular. La cantidad de fluorescencia en cualquier ciclo dado, o en el siguiente ciclo, depende de la cantidad de amplicones específicos presentes en ese momento. El SmartCycler® simultáneamente controla la fluorescencia emitida por cada marcador, interpreta todos los datos y al final del programa del ciclo proporciona un resultado final (véase Interpretación de resultados).

Reactivos

- **Prueba BD GeneOhm™ StrepB**: 50 pruebas
- **Tampón de muestras (Sample Buffer)**: 60 x 1 mL
- **Solución tampón Tris-EDTA**: 50 tubos
- **Tubo de lisis (Lysis tube)**: Perlas de vidrio
- **Mezcla maestra (Master Mix)**: 50 tubos
  - < 0.001% Complejo ADN polimerasa
  - < 0.001% Control Interno – ADN no infeccioso que contiene secuencias de unión de cebadores de SGB y una secuencia única para hibridación con la sonda.
  - < 0.001% cebadores
  - < 0.002% sondas moleculares
  - < 0.05% dATP, dCTP, dGTP, dTTP
  - Albúmina sérica bovina
  - Hidrato de carbono
  - < 0.005% ADN genómico no infeccioso de \textit{Streptococcus pneumoniae}
- **Control positivo (Positive Control)**: 50 tubos
  - < 0.001% Complejo ADN polimerasa
  - < 0.001% Control Interno – ADN no infeccioso que contiene secuencias de unión de cebadores de SGB y una secuencia única para hibridación con la sonda.
  - < 0.001% cebadores
< 0,002 % sondas moleculares  
< 0.05% dATP, dCTP, dGTP, dTTP  
Albúmina sérica bovina  
Hidrato de carbono  
< 0.001% ADN genómico no infeccioso de SGB con el gen cfb

**Control negativo (Negative Control)**  
50 tubos  
< 0.001% Complejo ADN polimerasa  
< 0.001% Control Interno – ADN no infeccioso que contiene secuencias de unión de cebadores de SGB y una secuencia única para hibridación de sonda.  
< 0.001% cebadores  
< 0.002% sondas moleculares  
< 0.05% dATP, dCTP, dGTP, dTTP  
Albúmina sérica bovina  
Hidrato de carbono  
< 0.005% ADN genómico no infeccioso de *Streptococcus pneumoniae*

**Diluyente (Diluent)**  
50 x 1 mL  
Solución tampón Tris-HCl  
MgCl$_2$  
(NH$_4$)$_2$SO$_4$

**Precauciones**

**Esta prueba es únicamente para diagnóstico *in vitro***.

- No utilice el kit si el precinto de seguridad de la caja exterior está roto.
- No utilice los reactivos si las bolsas protectoras están abiertas o desgarradas a su llegada.
- Cierre las bolsas protectoras de las mezclas maestras y controles rápidamente con el cierre deslizante después de cada uso.
- No retire el desecante de las bolsas de mezcla maestra y de controles.
- No utilice los reactivos si no hay desecante dentro de las bolsas de mezcla maestra y de controles.
- Los reactivos no son intercambiables entre los lotes.
- No mezcle nunca los reactivos de distintos tubos, incluso si pertenecen al mismo lote.
- No utilice los reactivos después de la fecha de caducidad.
- No intercambie tapas entre los reactivos, ya que puede producirse contaminación que altere los resultados de la prueba.
- Evite la contaminación microbiana y de desoxirribonucleasa (DNAsa) de los reactivos cuando saque las muestras de los tubos. Se recomienda el uso de puntas de pipeta desechables de desplazamiento positivo o con filtro, esterilizadas y sin DNAsa.
- Para evitar la contaminación del medio con amplicones de SGB, no abra los tubos de reacción después de la amplificación.
- Utilice una nueva punta para cada muestra o reactivo.
- El realizar la prueba fuera de los intervalos de tiempo recomendados puede invalidar los resultados. Las pruebas que no hayan sido realizadas dentro de los intervalos de tiempo especificados deben repetirse.
- Pueden examinarse controles adicionales de acuerdo con las pautas o requisitos del reglamento local, estatal, provincial y/o federal o de organizaciones acreditadoras.
- En los casos en que el laboratorio realiza también pruebas de PCR con tubos abiertos, deben utilizarse zonas de trabajo separadas y aisladas para las actividades de preparación de muestras y amplificación / detección. Los suministros y el equipo deben estar dedicados a cada área y no deben moverse de un área a otra. Siempre deben llevarse guantes y éstos deben cambiarse antes de pasar de un área a otra o antes de manipular reactivos liofilizados.
- Manipule siempre las muestras como si fueran infecciosas, y de acuerdo con los procedimientos de seguridad en laboratorio, como los descritos en Biosafety in Microbiological and Biomedical Laboratories y en el en Documento M29 de CLSI.
- Lleve ropa protectora y guantes desechables cuando manipule los reactivos del equipo. Lávese las manos bien después de realizar la prueba.
- No pipetee con la boca.
- No fume, beba, o coma en áreas donde se trabaje con muestras o reactivos del equipo.
- Deshágase de los reactivos no utilizados y de los desechos, de acuerdo con el reglamento federal, provincial, estatal y local del país.

**Material proporcionado**
- Tampón de muestras (Sample Buffer)
- Tubo de lisis (Lysis tube)
- Mezcla maestra (Master Mix)
- Control positivo (CP) (Positive Control)
- Control negativo (CN) (Negative Control)
- Diluyente (Diluent)
- Etiquetas de identificación de muestras

**Conservación, manipulación y estabilidad**

**Muestras obtenidas**
Las muestras deben mantenerse entre 2 °C y 30 °C durante el transporte. Protéjalas contra la congelación o exposición a un calor excesivo.

Las muestras que puedan ser analizadas dentro de las 24 horas pueden guardarse a temperatura ambiente; de lo contrario, se recomienda refrigerarlas. Las muestras guardadas entre 2 °C y 8 °C se mantienen estables hasta 6 días.

**Reactivos**
**Nota:** Las condiciones de conservación deben seguir las especificaciones escritas en cada bolsa. Los tubos que estén fuera de su bolsa protectora y no fueran utilizados dentro de los intervalos de tiempo especificados deben ser desechados.

<table>
<thead>
<tr>
<th>Componente del equipo</th>
<th>Master Mix y Controls (etiquetas blancas, rojas o verdes)</th>
<th>Lysis tube (tapa amarilla)</th>
<th>Sample buffer y Diluent (tapa azul, y etiqueta de tira negra respectivamente)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bolsa cerrada</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>Fecha de caducidad</td>
<td>Fecha de caducidad</td>
<td>Fecha de caducidad</td>
</tr>
<tr>
<td><strong>Bolsa abierta</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>2-8 °C</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>Fecha de caducidad</td>
<td>Fecha de caducidad</td>
<td>2 meses</td>
</tr>
</tbody>
</table>

1 Una vez roto el precinto original, cierre con cuidado la bolsa con el cierre deslizante después de cada uso y conservela a 2 -8 °C.
2 Aunque estos reactivos puedan almacenarse a temperatura ambiente deberían ser conservados con sus reactivos asociados del mismo lote a 2-8 °C.
3 Siempre que la bolsa esté bien cerrada con el cierre deslizante después de cada uso.

<table>
<thead>
<tr>
<th>Componente del equipo fuera de su bolsa protectora</th>
<th>Master Mix y Controls (etiquetas blancas, rojas o verdes)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tubos no preparados</strong></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>15-25 °C</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>2 horas</td>
</tr>
</tbody>
</table>
Material necesario pero no suministrado

- Líquido de Stuart BBL™ CultureSwab™ (nº de catálogo de Becton Dickinson 220099), líquido de Stuart Transystem™ de Copan (nº de catálogo de Copan Italia International 141C.USE), líquido de Stuart Venturi Transystem™ de Copan (nº de catálogo de Copan Diagnostics Inc. 141C.US), líquido de Stuart único TransPorter™ de HealthLink (nº de catálogo de HealthLink 4432).
- Vortex Genie 2 (Fisher) con portamicrotubo o equivalente; para procesar múltiples muestras pueden usarse adaptadores con varios lugares de sujeción.
- Micropipetas (margen de precisión entre 1-50 µL)
- Puntas de pipeta de desplazamiento positivo o con filtro estériles y sin DNAsa.
- Tijeras
- Gasas
- Guantes desechables, sin polvo
- Microcentrifuga para centrifugación a baja velocidad
- Bloque de calor seco para tubos de 1,5 mL o baño maría
- Hielo o bloque de enfriamiento para tubos de 1,5 mL
- Cronómetro o minuto
- Sistema iniciador (starter system) SmartCycler® con Software Dx (bloque de procesamiento, manual del usuario, equipo de accesorios y ordenador de escritorio) (Cepheid, Sunnyvale, CA, EE.UU.)

Modo de empleo

Obtención de muestras

Para obtener una muestra adecuada, debe seguirse rigurosamente el procedimiento para obtención de muestras.

Utilizando la torunda recomendada en medio Stuart líquido (consulte la sección Material necesario pero no suministrado), se obtienen muestras vaginales-rectales de acuerdo con el siguiente procedimiento:

1. Limpie el exceso de secreción o flujo de la zona vaginal;
2. Inserte la torunda con cuidado en el tercio inferior de la vagina, y obtenga muestras de secreciones de la mucosa;
3. Inserte la misma torunda con cuidado aproximadamente 2,5 cm más allá del esfínter anal, y gire suavemente para obtener muestras de las criptas anales;
4. Vuelva a poner la torunda en su recipiente;
5. Etiquete el recipiente;
6. Envíe las muestras al laboratorio de acuerdo con los procedimientos normalizados de trabajo del hospital. Proteja contra la exposición a un calor excesivo las muestras que se envíen a un laboratorio externo.
7. En el laboratorio mantenga todas las muestras a temperatura ambiente hasta la realización de las pruebas (si se llevan a cabo en un plazo de 24 horas a partir de la obtención de muestras).

Preparación de muestras

Nota: Se requieren un tubo de Sample Buffer (tampón de muestras, tapa azul) y un Lysis tube (tubo de lisis tapa amarilla) para el análisis de cada muestra. Saque el número necesario de tubos de las bolsas protectoras, extraiga el exceso de aire y cierre las bolsas rápidamente con el cierre deslizante.

1. Coloque el dispositivo de obtención de muestras (la torunda) en un tubo de solución tampón de muestras (tapa azul).
   Identifique la solución tampón de muestras en la tapa y/o la etiqueta del tubo.
2. Rompa el palo de la torunda y cierre el tubo herméticamente.
   Sujete la torunda por el palo cerca del borde del tubo (utilice gasa para minimizar los riesgos de contaminación). Levante la torunda unos milímetros (mm) del fondo del tubo y doble el palo contra el borde del tubo para romperlo. **Método alternativo:** use tijeras limpias para cortar el palo. Asegúrese de cerrar la tapa herméticamente.

3. Déjela reposar durante 5 minutos.

4. Agite con Vortex a alta velocidad durante 15 segundos.
   Para procesar múltiples muestras, pueden usarse adaptadores con varios lugares de sujeción.

5. Transfiera 50 µL de suspensión celular al tubo de lisis (tapa amarilla); ciérrela herméticamente.
   Utilice una punta de micropipeta nueva para cada muestra.

6. Agite con Vortex a alta velocidad durante 5 minutos.
   Para procesar múltiples muestras, pueden usarse adaptadores con varios lugares de sujeción.

7. Centrifíquelo el tubo de lisis brevemente (centrifugado rápido).
   A velocidad baja durante 2 a 5 segundos, para que el contenido quede al fondo del tubo.

8. Caliente a 95 ± 2°C durante 2 minutos.
   Utilice un bloque de calor seco para los tubos de 1,5 mL o un baño María

9. Ponga el tubo de lisis en hielo o en un bloque de enfriamiento.

**Procedimiento de la prueba BD GeneOhm™ StrepB**

**Nota:** Se necesita un tubo de Master Mix (mezcla maestra - tubo SmartCycler® con etiqueta blanca) para analizar cada muestra. Se necesitan un tubo de Positive Control (control positivo, etiqueta roja) y un tubo de Negative Control (control negativo, etiqueta verde) para cada serie analítica. Se necesita un tubo de Diluent (diluyente, etiqueta con tira negra) para la preparación de hasta 40 reacciones de PCR. Saque el número necesario de tubos de las bolsas protectoras, **extraiga el exceso de aire y cierre las bolsas rápidamente con el cierre deslizante.**

Prepare sólo el número necesario de tubos SmartCycler para llenar los módulos I-CORE® disponibles en el instrumento SmartCycler®.

1. Coloque en el bloque de enfriamiento SmartCycler® los tubos de mezcla maestra, control positivo y control negativo que vayan a ser analizados.
   Identifique el(los) tubo(s) de mezcla maestra (etiqueta blanca) en la tapa con las etiquetas de identificación de muestras incluidas en el equipo.

2. Abra los tubos de mezcla maestra, control positivo y control negativo.
   Sujete el tubo firmemente por la parte superior estriada y levante la tapa con un movimiento vertical hacia arriba. No la levante horizontalmente. **Evite tocar las ventanas de detección óptica en los bordes inferiores del tubo y la parte inferior en forma de rombo.**

3. Agregue 25 µL de diluyente (etiqueta negra) a todos los tubos; cierre parcialmente los tubos de mezcla maestra.
   Vierta el diluyente en el depósito (parte superior) de cada tubo.

4. Agregue 1,5 µL de cada lisado a un tubo de mezcla maestra diferente; cierre los tubos herméticamente.
   Tenga cuidado de no aspirar las perlas al llenar el tubo de lisis. Después de añadir la muestra, pipetea hacia arriba y hacia abajo en el depósito de 2 a 3 veces para asegurar la transferencia del volumen completo. Cierre el tubo de lisis y el tubo de mezcla maestra. Utilice una punta de micropipeta nueva para cada muestra.

5. Cierre los tubos de control positivo y negativo.
   **El control negativo debería ser la última muestra preparada para un ensayo dado (es decir, todas las muestras se analizan simultáneamente en el SmartCycler®).**

6. Centrifugue todos los tubos de reacción durante 5 a 10 segundos.
   Utilice la microcentrífuga especialmente adaptada, suministrada con el SmartCycler®.

7. Mantenga los tubos de reacción entre 2 y 8 ºC en el bloque de enfriamiento SmartCycler® antes de colocarlos en el instrumento.
Los lisados restantes deben congelarse a -20 ± 5 °C para uso posterior, si es necesario.

8. Justo antes de colocar los tubos en el instrumento, tome el BLOQUE DE ENFRIAMIENTO CON LOS TUBOS TODAVÍA EN SU SITIO y AGITE EN EL VORTEX POR INVERSIÓN durante 5 a 10 segundos.

9. Cree una serie con el protocolo de la prueba BD GeneOhm™ StrepB.
Si es necesario consulte el Manual del operador del Software Dx de SmartCycler®. Debe introducir los parámetros de identificación para las muestras antes de empezar la serie.

10. Inserte cada tubo de reacción en un módulo I-CORE® del SmartCycler® y cierre la tapa del I-CORE®.
Coloque los controles positivo y negativo en su posición adecuada (véase la sección titulada “Control de calidad”). Empuje hacia abajo todos los tubos firmemente hasta que estén en su sitio.

11. Empiece la serie.

Control de calidad

Controles positivo y negativo
Los procedimientos de control de calidad están concebidos para supervisar la eficacia de la prueba. El control positivo está pensado para controlar fallos importantes de los reactivos. El control negativo se utiliza para detectar la contaminación de reactivos o la contaminación ambiental (o por recirculación) por ampliones de S. agalactiae o SGB. Los controles positivo y negativo son controles de prueba (controles de serie). Un control no válido invalida la serie. Por último, un control interno incorporado a cada mezcla de reacción está concebido para controlar la inhibición de PCR en cada muestra.

Debe procesarse un control positivo y un control negativo para cada serie en el SmartCycler®. El software asigna automáticamente la posición de los controles en el instrumento (consulte el Manual del operador del Software Dx de SmartCycler®).

Controles de procesamiento de las muestras
Se pueden analizar cepas de control de acuerdo con las pautas o requisitos del reglamento local, estatal y/o federal o de organizaciones acreditadoras. Pueden utilizarse un cultivo de Streptococcus grupo B (p.ej. S. agalactiae, American Type Culture Collection, ATCC 12973) o una cepa aislada bien caracterizada de S. agalactiae como control de procesamiento de muestras, mientras que pueden usarse un cultivo de Streptococcus bovis (p.ej. ATCC 33317) o de cualquier otro Streptococcus que no sea del grupo B, como control negativo externo.

Transfierva 3 colonias de 1-2 mm de tamaño de una placa de agar sangre de carnero a 3 mL de caldo trípticasa soja y déjelas crecer hasta un diámetro exterior de 0,6 mm a 600 nm. Prepare diluciones seriadas en solución salina para obtener una suspensión bacteriana de aproximadamente 10^6 UFC/mL. Sumerja la torunda recomendada con medio Stuart líquido (consulte la sección Material necesario pero no suministrado) en la suspensión bacteriana, vuelva a colocar la torunda en su recipiente (para permitir el contacto con el medio de transporte), déjelo reposar a temperatura ambiente durante 5 minutos y luego procéselo y analícelo como una muestra clínica (Consulte las secciones tituladas Preparación de muestras y Procedimiento de la prueba BD GeneOhm™ StrepB®). Todas las muestras y controles deberían dar resultados válidos (ningún control positivo o negativo no válido y ningún control interno fallido).

Este procedimiento puede servir también como procedimiento de control de calidad para dispositivos de obtención de muestras. En dichos casos, las pruebas deben hacerse por triplicado de acuerdo con las instrucciones del prospecto (Preparación de muestras), incluidos los controles. Todas las muestras y controles deberían dar resultados válidos (ningún control positivo o negativo no válido y ningún control interno fallido).

Para orientación general sobre control de calidad, el usuario quizás prefiera consultar el documento MM3® y C24 del CLSI10.
Prueba de sensibilidad antibiótica para pacientes alérgicas a la penicilina

Nota: La solución tampón de muestras no debería afectar la viabilidad del organismo. Sin embargo, no ha sido evaluado el uso de la solución tampón en el cultivo. Puede obtenerse una segunda muestra de las mujeres para realizar un antibiograma. Los laboratorios quizás prefieran validar otros enfoques. Los procedimientos para cultivos y antibiogramas pueden obtenerse de los CDC.

Interpretación de resultados

El algoritmo de decisión para la prueba BD GeneOhm™ StrepB está integrado en el software SmartCycler®. La interpretación de los resultados de la prueba se lleva a cabo de acuerdo con los siguientes criterios:

<table>
<thead>
<tr>
<th>Resultado notificado de la prueba</th>
<th>Resultado notificado de CI</th>
<th>Interpretación del resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG (Negativo)</td>
<td>PASS (Aceptado)</td>
<td>No se ha detectado ningún ADN de SGB, supuesto negativo de SGB o el número de organismos puede estar por debajo del límite de detección de la prueba</td>
</tr>
<tr>
<td>POS (Positivo)</td>
<td>NA (NA)</td>
<td>Detectado ADN de SGB, supuesto positivo de SGB</td>
</tr>
<tr>
<td>Unresolved (Sin resolver)</td>
<td>FAIL (Rechazado)</td>
<td>Sin resolver - Muestra inhibidora o defecto de reactivo</td>
</tr>
<tr>
<td>ND (SD)</td>
<td>ND (SD)</td>
<td>Sin determinar debido a fallo del Módulo I-CORE® (con advertencias o códigos de error)</td>
</tr>
</tbody>
</table>

IC = Control Interno; NA = no aplicable; SD = sin determinar.

Un control positivo o negativo no válido invalida la serie analítica. En dichos casos, los resultados de la prueba obtenidos en esa serie no son válidos y no deben ser notificados. En la pantalla y en los informes aparece marcado serie no válida o códigos de error o advertencias del instrumento. Antes de notificar los resultados de SGB, verifique siempre que la serie sea válida. Consulte el Manual del operador del Software Dx de SmartCycler® para imprimir los resultados.

Serie no válida

Utilizando lisados congelados, prepare nuevos tubos de reacción para todas las muestras clínicas de esa serie junto con nuevos tubos de control.

Muestras sin resolver

Repita la prueba con el lisado congelado de la muestra correspondiente. Se ha demostrado que el efecto del ciclo de congelación-descongelación reduce las sustancias inhibidoras de PCR.

Muestra sin determinar debido a fallo del módulo I-CORE®

Repita la prueba con el lisado congelado de la muestra correspondiente. Para la interpretación de mensajes de advertencia o códigos de error, consulte el Manual del operador del Software Dx de SmartCycler®.
Limitaciones del procedimiento

- La eficacia de esta prueba se ha establecido con el SmartCycler®, con muestras vaginales-rectales de pacientes antes y durante el parto, obtenidas con Copan Venturi Transystem® y medio Stuart líquido. Por consiguiente, este producto sólo puede utilizarse con el SmartCycler®; además, no se recomienda el uso de otros sistemas de obtención y transporte de muestras, aparte de los que figuran en la sección Material necesario pero no suministrado. No se han evaluado otras fuentes clínicas y se desconoce la eficacia de esta prueba en otros tipos de muestras.

- Pueden producirse resultados negativos de la prueba debido a una obtención, manipulación o conservación inadecuadas de las muestras, a la presencia de un inhibidor, a un error técnico, a la confusión de muestras o a que el número de organismos en la muestra sea inferior a la sensibilidad analítica de la prueba. Es necesario ajustarse cuidadosamente a las instrucciones incluidas en este prospecto y en el Manual del operador del Software Dx de SmartCycler® para evitar resultados erróneos. El uso de esta prueba debe limitarse al personal capacitado en el procedimiento y a la utilización del SmartCycler®.

- Debido a que la detección del Streptococcus grupo B depende del número de organismos presentes en la muestra, los resultados fiables dependen de la obtención, manipulación y conservación adecuadas de las muestras.

- A veces los resultados de la prueba BD GeneOhm™ StrepB pueden quedar sin resolver o invalidados debido a un control no válido, y es necesario volver a hacer pruebas que pueden ocasionar un retraso en la obtención de los resultados.

- Asimismo pueden producirse resultados falsos negativos debido a la presencia de sustancias inhibidoras de polimerasa; el control interno presente en la mezcla maestra permite la detección de dichas sustancias.

- La presencia de mutaciones en las regiones de unión de las sondas o de los cebadores puede afectar la detección, especialmente cuando la concentración de microorganismos es inferior a $10^4$ organismos. No existen informes publicados de cepas aisladas de SGB carentes del gen cfb. Si ocurriera tal caso, la prueba BD GeneOhm™ StrepB produciría un resultado falso negativo. No se ha evaluado con la prueba BD GeneOhm™ StrepB ninguna cepa aislada de SGB fenotípicamente negativa con respecto al factor CAMP.

- Un resultado positivo no indica necesariamente la presencia de un organismo viable. Sin embargo, es un indicio de la presencia de Streptococcus grupo B.

- No se han evaluado los métodos de cultivo de la solución tampón de muestras de BD GeneOhm™ StrepB. Los laboratorios deben validar sus propios procedimientos de cultivo u obtener otra muestra para tenerla en reserva.

- Los resultados de la muestra BD GeneOhm™ StrepB deben utilizarse como un complemento de las observaciones clínicas y otra información a disposición del médico. El propósito de la prueba no es diferenciar los portadores de Streptococcus grupo B de aquellos con infección estreptocócica. Los resultados de la prueba pueden también verse afectados por la terapia simultánea con antibióticos, por consiguiente el éxito o fracaso terapéutico no puede evaluarse utilizando esta prueba, ya que el ADN puede persistir después de la terapia antimicrobiana.

- Aunque no hay necesidad de preparación de reactivos y las principales operaciones técnicas incluyen pipeteado, es esencial una buena técnica de laboratorio para el funcionamiento adecuado de esta prueba. Debido a la alta sensibilidad analítica de esta prueba, debe tenerse extrema precaución para preservar la pureza de todos los reactivos, especialmente en los casos en que se toman múltiples alícuotas de un solo tubo.

- Se recomiendan buenas prácticas de laboratorio y la utilización de guantes para evitar la contaminación de las muestras o los reactivos.
Sustancias interferentes

La lista no exhaustiva de sustancias potencialmente interferentes es la siguiente: líquido amniótico, meconio, sangre, heces, lubricantes, orina y mucosa vaginal. La presencia de un exceso de secreciones vaginales (antes y durante el parto) puede inhibir la PCR y producir resultados no concluyentes. Por consiguiente, se recomienda limpiar la zona vaginal antes de la obtención de muestras. La presencia de un exceso de sangre puede también provocar la inhibición de la PCR y producir resultados indeterminados.

En un estudio experimental en el que se obtuvieron 803 muestras vaginales y rectales de pacientes durante el parto, se notificaron sustancias potencialmente interferentes previamente mencionadas en el 63% de las muestras obtenidas. Sólo un 1% (10/803) de las muestras produjo resultados indeterminados. De ellas, no se notificaron sustancias potencialmente interferentes en 6 muestras, se notificó líquido amniótico en 1 y una combinación de sustancias en 3 de las muestras. Todas menos una fueron resueltas después de un ciclo de congelación-descongelación de la muestra. En la muestra que no pudo resolverse, no se observó ninguna sustancia potencialmente interferente.

Valores previstos

Aproximadamente entre el 10% y el 30% de mujeres embarazadas están colonizadas por SGB en la vagina o el recto². La colonización por SGB puede ser transitoria, crónica o intermitente. La detección de la presencia de SGB en vagina y recto mediante cultivo, al final de la gestación, permite determinar durante el seguimiento prenatal las mujeres susceptibles de estar colonizadas por SGB en el momento del parto. En el estudio experimental para BD GeneOhm™ StrepB, la tasa de colonización global en el momento del parto, determinada con la técnica de cultivo, fue del 18,6% con un intervalo entre 9,1% y 28,7% en las distintas instituciones clínicas. Con BD GeneOhm™ StrepB, en general, el 20,1% de las mujeres durante el parto dieron positivo. Además de la detección precoz durante el parto, a un grupo de mujeres (674) se le realizó un cultivo antes del parto, de ellas, el 11,7% dio positivo en las pruebas prenatales.

En general, el 10,2% de esas mujeres presentó resultados de cultivo antes del parto diferentes a los resultados de cultivo durante el parto, y el 11,6% presentó resultados de cultivo antes del parto diferentes a los resultados de BD GeneOhm™ StrepB durante el parto. En otros estudios, se notificaron sensibilidades del 87%¹¹ (83-92% IC) y del 69%¹² (57-79% IC) y especificidades del 96%¹¹ (95-98% IC) y del 92%¹² (89-94% IC) para los cultivos prenatales tardíos en la identificación del estado de colonización durante el parto.

Eficacia diagnóstica

Eficacia clínica

La eficacia diagnóstica de la prueba BD GeneOhm™ StrepB se determinó en un estudio experimental prospectivo en múltiples establecimientos: cinco instituciones con servicios de maternidad, 2 en Canadá y 3 en los EE.UU. Cada institución tenía implantado un programa de detección sistemática mediante cultivo. Las pruebas se realizaron en laboratorios clínicos asociados a cada institución. Para participar en el estudio, las mujeres tenían que dar su consentimiento por escrito, estar de parto y no tener ninguna contraindicación para el examen vaginal (p.ej. hemorragia). Tampoco podía haber indicios de placenta previa, ni indicación urgente para efectuar el parto, ni haber tomado antibióticos la semana anterior al ingreso hospitalario. El estudio no tuvo en cuenta la duración de parto de las pacientes.

El método de referencia utilizado fue la técnica de cultivo recomendada por los Centros para el Control y la Prevención de Enfermedades, es decir, cultivo microbiológico en medio selectivo (medio Todd-Hewitt enriquecido con 15 µg/mL de ácido nalidixico, y 10 µg/mL de colistina o con 8 µg/mL de gentamicina y 15 µg/mL de ácido nalidixico; otros medios de cultivo ofrecidos en el mercado incluyen el medio SBM o el medio Lim), seguido de incubación durante la noche y subcultivo en medio sólido de agar sangre. Se realizó la identificación específica de colonias que parecen indicar SGB con pruebas de aglutinación en portaobjetos.

Ochocientas ochenta y un (881) mujeres dieron su consentimiento para participar en el estudio. De ellas, 78 fueron excluidas, bien porque la mujer había cambiado de opinión, porque no estaba de parto o debido a incumplimiento del protocolo. Por consiguiente, la eficacia diagnóstica de BD GeneOhm™ StrepB fue determinada a partir de los resultados de 803 pacientes durante el parto.

Se obtuvieron dos muestras vaginales/rectales de cada paciente durante el parto con la torunda recomendada en medio Stuart líquido (consulte la sección Material necesario pero no suministrado).
utilizando el procedimiento recomendado por los CDC. Una muestra fue analizada con la técnica de cultivo recomendada por los CDC y otra muestra con la prueba BD GeneOhm™ StrepB. Los resultados del estudio se presentan en las Tablas 1 a 4.

**Tabla 1.** Resultados obtenidos con la prueba BD GeneOhm™ StrepB con relación a la técnica de cultivo.

<table>
<thead>
<tr>
<th>Técnica de cultivo</th>
<th>Positivo</th>
<th>Negativo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba BD GeneOhm™ StrepB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>140&lt;sup&gt;A&lt;/sup&gt;</td>
<td>9</td>
<td>149</td>
</tr>
<tr>
<td>Negativo</td>
<td>27&lt;sup&gt;B&lt;/sup&gt;</td>
<td>626&lt;sup&gt;C&lt;/sup&gt;</td>
<td>653</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>635</td>
<td>802&lt;sup&gt;D&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>A</sup> Catorce (14) muestras resultaron inicialmente con cultivo negativo, pero al someterlas a investigación se descubrió que dieron cultivo positivo; 1 de las 14 muestras inicialmente había dado un resultado indeterminado pero tras ser analizada de nuevo dio resultado positivo; 3 muestras que inicialmente dieron resultado positivo en la prueba BD GeneOhm™ StrepB fueron analizadas de nuevo debido a controles no válidos (positivo y negativo) y dieron resultado positivo.  

<sup>B</sup> Una (1) muestra que inicialmente dio positivo con la prueba BD GeneOhm™ StrepB fue analizada de nuevo debido a un control no válido y dio nuevamente un resultado positivo.  

<sup>C</sup> Doce (12) muestras que inicialmente dieron negativo en la prueba BD GeneOhm™ StrepB fueron analizadas de nuevo debido a un control no válido y todas dieron resultado positivo; 8 muestras que inicialmente dieron un resultado indeterminado fueron analizadas nuevamente y dieron resultado positivo.  

<sup>D</sup> Una (1) muestra que dio inicialmente un resultado indeterminado quedó sin resolver tras ser analizada nuevamente y no se incluyó en la tabla expuesta más arriba.

La investigación de las muestras que dieron cultivo positivo/resultados negativos de BD GeneOhm™ StrepB (n=9) reveló que todas las muestras tenían una carga bacteriana por debajo del límite de detección de BD GeneOhm™ StrepB. También se demostró que todas las cepas aisladas recuperadas de las placas de cultivo positivo dieron un resultado positivo con BD GeneOhm™ StrepB.

La prevalencia general en la población estudiada fue del 18,6%, con un intervalo del 9,1% al 28,7% en las diferentes instituciones clínicas. El valor de predicción negativo fue de 98,6% (95% IC, 97,3%-99,3%) y el valor de predicción positivo fue de 83,8% (95% IC, 77,4%-89,1%).

**Tabla 2.** Eficacia clínica de la prueba BD GeneOhm™ StrepB en relación con la técnica de cultivo recomendada por los CDC.

<table>
<thead>
<tr>
<th>Sensibilidad clínica</th>
<th>Especificidad clínica</th>
<th>N° de muestras sin resolver</th>
<th>No válido/ nº total de series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro 1 93% (n=15) (68%-100%)&lt;sup&gt;A&lt;/sup&gt;</td>
<td>93% (n=150) (87%-96%)&lt;sup&gt;A&lt;/sup&gt;</td>
<td>5</td>
<td>2/55</td>
</tr>
<tr>
<td>Centro 2 88% (n=25) (69%-97%)</td>
<td>100% (n=62) (97%-100%)</td>
<td>0</td>
<td>0/38</td>
</tr>
<tr>
<td>Centro 3 99% (n=77) (93-100%)</td>
<td>97% (n=350) (94%-98%)</td>
<td>1</td>
<td>1/56</td>
</tr>
<tr>
<td>Centro 4 85% (n=13) (54%-98%)</td>
<td>100% (n=35) (98%-100%)</td>
<td>1</td>
<td>1/21</td>
</tr>
<tr>
<td>Centro 5 89% (n=19) (67%-99%)</td>
<td>93% (n=56) (82%-98%)</td>
<td>3</td>
<td>1/22</td>
</tr>
<tr>
<td>Total: 94% (n=149) (89%-97 %)</td>
<td>96% (n=653) (94% - 97%)</td>
<td>10&lt;sup&gt;B&lt;/sup&gt;</td>
<td>5/192</td>
</tr>
</tbody>
</table>

<sup>A</sup>Intervalos de confianza del 95% por el método de exacto binomial.  

<sup>B</sup>Todas las muestras quedaron sin resolver debido a controles internos fallidos que revelan la inhibición de la PCR o defecto de reactivo. Nueve (9) de las 10 fueron resueltas tras ser sometidas a otra prueba.
Tabla 3. Estratificación de los resultados de acuerdo con el tiempo transcurrido entre la obtención de muestras y el análisis con la prueba BD GeneOhm™ StrepB.

<table>
<thead>
<tr>
<th>Tiempo transcurrido (horas)</th>
<th>Cultivo positivo</th>
<th>Cultivo negativo</th>
<th>% de concordancia (95% IC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BD GeneOhm™</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>positivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>negativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>positivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 a 4</td>
<td>11</td>
<td>88</td>
<td>93% (87-97%)</td>
</tr>
<tr>
<td>4 a 8</td>
<td>32</td>
<td>220</td>
<td>95% (92-97%)</td>
</tr>
<tr>
<td>8 a 12</td>
<td>9</td>
<td>29</td>
<td>95% (83-99%)</td>
</tr>
<tr>
<td>12 a 24</td>
<td>41</td>
<td>143</td>
<td>97% (93-99%)</td>
</tr>
<tr>
<td>24 a 48</td>
<td>35</td>
<td>127</td>
<td>96% (92-98%)</td>
</tr>
<tr>
<td>&gt; 48</td>
<td>12</td>
<td>19</td>
<td>97% (84-100%)</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>626</td>
<td>96% (94-97%)</td>
</tr>
</tbody>
</table>

A) Todas las muestras tenían una carga bacteriana por debajo del límite de detección de BD GeneOhm™ StrepB.
B) Todas las muestras contenían la región diana adecuada (incluyendo las regiones de unión de los cebadores) del gen cfb y el producto amplificado fue el esperado con BD GeneOhm™ StrepB.

La ruptura de la membrana no afectó la eficacia de la prueba BD GeneOhm™ StrepB. Utilizando la presencia o ausencia de líquido amniótico y/o meconio en las muestras obtenidas como indicación de ruptura de la membrana, la sensibilidad y especificidad de la prueba BD GeneOhm™ StrepB son las mismas utilizadas antes o durante el parto (Tabla 4).

Tabla 4. Eficacia de la prueba BD GeneOhm™ StrepB antes y durante el parto.

<table>
<thead>
<tr>
<th></th>
<th>Sensibilidad</th>
<th>Especificidad</th>
<th>% de concordancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes del parto</td>
<td>95% (53/56)</td>
<td>96% (301/315)</td>
<td>95% (354/371)</td>
</tr>
<tr>
<td></td>
<td>(85-99%)</td>
<td>(93-98%)</td>
<td>(93-97%)</td>
</tr>
<tr>
<td>Durante el parto</td>
<td>94% (87/93)</td>
<td>96% (325/338)</td>
<td>96% (412/431)</td>
</tr>
<tr>
<td></td>
<td>(86-98%)</td>
<td>(94-98%)</td>
<td>(93-97%)</td>
</tr>
</tbody>
</table>

A) Intervalos de confianza del 95% por el método de exacto binomial.

Especificidad analítica

Se analizó el ADN genómico de 99 cepas ATCC de 27 especies de estreptococos, otras especies relacionadas filogenéticamente con S. agalactiae, otras bacterias y hongos levaduriformes encontrados comúnmente en la flora vaginal y rectal y ADN humano. Entre ellos había 9 microorganismos que no se habían notificado como portadores del gen cfb pero provocaban actividad similar al factor CAMP. Para el ADN microbiano, se utilizaron 1,5 ng (2x10<sup>5</sup> copias de genoma equivalente por reacción PCR o 10<sup>8</sup> copias de genoma equivalente/mL). Para el ADN humano, se utilizaron de 75 a 233 ng (hasta 1,4x10<sup>5</sup> copias de genoma por reacción o 10<sup>8</sup> copias/mL). La especificidad fue del 100%.

Sensibilidad analítica

La sensibilidad analítica (Límite de detección o LD) de la prueba BD GeneOhm™ StrepB fue determinada con 12 cepas de S. agalactiae de 11 serotipos o variantes conocidos. El cultivo cuantitativo y el ADN genómico purificado diluidos en la solución tampón de muestras de la prueba BD GeneOhm™ StrepB se analizó en 5 muestras. El LD se define como la concentración más pequeña en la que todas las muestras dan resultado positivo.

El LD de la prueba BD GeneOhm™ StrepB para S. agalactiae, serotipos y variantes Ia, Ib/c, II, IIc, IIR, III, IIIC, IIIR, V y VR, varía entre 10 y 50 copias del genoma por reacción con una media de 25 copias del genoma por reacción. El LD en UFC es de 3 a 9 UFC/reacción. Teniendo en cuenta el factor de dilución debido al procesamiento de muestras, esto se traduce en 10<sup>3</sup> a 10<sup>6</sup> UFC/muestra. En la siguiente tabla se detalla la concentración más baja de cada subtipo que da un resultado positivo en las 5 muestras.

Tabla 5. LD obtenido de cada serotipo analizado.

<table>
<thead>
<tr>
<th>Serotipo</th>
<th>Copias de genoma /reacción</th>
<th>UFC /reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 12973 (II)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>
Para el serotipo llc, existe incompatibilidad en una de las regiones de unión de los cebadores.

Reproductibilidad

Un panel de 10 muestras simuladas (R1 a R10) con diversas concentraciones de SGB y los dos controles (positivo y negativo) suministrados con la prueba BD GeneOhm™ StrepB se analizó por triplicado en tres días distintos en 3 instituciones (10 muestras más 2 controles analizados X 3 X 3 días X 3 instituciones). Se utilizó un lote de reactivo para el estudio.

Tabla 6. Resumen de resultados de reproductibilidad.

<table>
<thead>
<tr>
<th>Serotipo</th>
<th>Copias de genoma /reacción</th>
<th>UFC /reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia/c</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>VR</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Ia</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Ib/c</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIIR</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>IIIc</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>llcA</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

A Todas las muestras positivas tienen cantidades distintas de SGB.
B Muestra inicialmente sin resolver pero después de volver a ser analizada dio el resultado esperado.
C Todas las muestras fueron analizadas como serie única en vez de tres series distintas de 10 muestras y 2 controles.
Uso previsto

Il saggio BD GeneOhm™ StrepB è un test diagnostico qualitativo in vitro per il rilevamento rapido del DNA dello streptococco Gruppo B (Group B streptococcus, GBS) in campioni vaginali/rettali per donne prepartum o intrapartum. Il test eseguito sull’analizzatore automatizzato SmartCycler® utilizza la reazione a catena della polimerasi (polymerase chain reaction, PCR) per l’amplificazione di una sequenza genica cfb di GBS recuperato da campioni clinici e ibridizzazione specifica per il target fluorogenico per il rilevamento del DNA amplificato.

Il saggio BD GeneOhm™ StrepB può essere utilizzato per stabilire lo stato della colonizzazione GBS delle donne prepartum e intrapartum.

Riassunto e spiegazione del test

Un tampone vaginale/rettale è prelevato e trasportato al laboratorio utilizzando un tampone consigliato con mezzo liquido di Stuart (fare riferimento a Materiali necessari, ma non forniti). Il tampone è eluito in tampone, un’aliquota del campione è quindi lisata e aggiunta ai reagenti PCR che contengono i primer specifici GBS utilizzati per amplificare il target genetico del saggio (gene cfb), se presente. Il saggio include anche un controllo interno (internal control, IC) per rilevare campioni inibitori PCR e confermare l’integrità dei reagenti del saggio. I target amplificati (gene cfb e IC) sono rilevati con sonde di ibridizzazione etichettate con fluorofori temprati (“molecular beacon”). L’amplificazione, il rilevamento e l’interpretazione dei segnali sono eseguiti automaticamente dal software Cepheid SmartCycler®. L’intera procedura richiede circa 45 minuti.

Recentemente, l’incidenza della patologia perinatale streptococcica gruppo B negli Stati Uniti si è ridotta a causa dell’utilizzo della profilassi antibiotica per la prevenzione delle patologie GBS.1,2 Un sondaggio nazionale tra i membri ACOG nel 2000 ha rilevato che il 73,5% degli intervistati utilizzava una strategia basata sullo screening, che mostrava che lo screening antepartum contribuiva fortemente alla riduzione del 70% della patologia GBS ad attacco precoce da quando erano state applicate le indicazioni suggerite nel 1996 dai Centers for Disease Control and Prevention (CDC).3 Inoltre, nei casi di travaglio breve, la disponibilità dei risultati dello screening antepartum consente la somministrazione di antibiotici per via endovenosa non appena possibile dopo il ricovero (< 5 ore). In base agli attuali strumenti diagnostici, la CDC USA consiglia uno screening universale prenatale, basato su colture, per la colonizzazione GBS vaginale e rettale di tutte le donne alla 35ª-37ª settimana di gestazione2.

Sebbene questo consiglio sia basato sulla documentazione di un forte effetto protettivo della strategia di screening basata su colture rispetto alla strategia basata sul rischio, lo screening antepartum presenta limitazioni2,4. I risultati dello screening sono talvolta non noti al medico al momento del parto, lo stato della colonizzazione potrebbe cambiare fra il test e il parto e alcune donne non sottopongono a screening antepartum4. In ciascun caso, tali donne potrebbero non essere trattate adeguatamente per la colonizzazione GBS, aumentando così il rischio di infezione del neonato. Un test sensibile di screening rapido per GBS che possa fornire risultati di screening intrapartum in tempo per somministrare profilassi antibiotica sarebbe utile a diversi gruppi di donne, tra cui coloro che hanno ricevuto una cura prenatalle inadeguata, quelle i risultati dello screening antepartum non sono noti al momento del parto e quelle per cui sussiste pericolo di parto prematuro.

Avvertenza

- L’utilizzo di BD GeneOhm™ StrepB per lo screening intrapartum non dovrebbe precludere l’utilizzo di altre strategie (ad es. test antepartum). I risultati intrapartum di BD GeneOhm™ StrepB sono utili per identificare le candidate alla profilassi antibiotica intrapartum quando i risultati possono essere disponibili in tempo per somministrare antibiotici per via endovenosa almeno 4 ore prima del parto.
- Il saggio BD GeneOhm™ StrepB non fornisce risultati di suscettibilità. È necessario altro tempo per coltivare ed eseguire test di suscettibilità che sarebbero consigliati per donne allergiche alla penicillina.

Principio della procedura

Il target genetico del saggio BD GeneOhm™ StrepB è il gene cfb. Questo gene codifica il fattore CAMP, una proteina diffusibile extra-cellulare che è presente in quasi tutti gli isolati di GBS. Il rilevamento del fattore CAMP è utilizzato per l’identificazione presuntiva di GBS con metodi biochimici. Le caratterizzazioni fenotipica e molecolare hanno mostrato che il gene cfb è ben conservato all’interno di questa specie3,5. Sono stati sviluppati primer complementari a regioni conservate e specifiche del gene per amplificare un frammento 154 bp del gene cfb.
Un tampone vaginale/rettale è prelevato e trasportato al laboratorio utilizzando il tampone consigliato con mezzo liquido di Stuart (fare riferimento a Materiali necessari, ma non forniti). Il tampone è collocato in una soluzione tampone campione per eluirne il contenuto e un’aliquota è trasferita alla provetta di lisi. La lisi si verifica attraverso una combinazione di azione chimica e fisica e richiede meno di 15 minuti. Un campione del lisato è aggiunto direttamente ai reagenti PCR contenuti nella provetta di reazione SmartCycler® e analizzato con lo strumento SmartCycler®, un variatore termico di fluorescenza in tempo reale ad accesso casuale.

In campioni contenenti GBS, la regione 154 bp del gene cfb è amplificata e rilevata. Si verifica anche l’amplificazione dell’IC, un frammento di DNA 180-bp composto da una sequenza 134-bp non rilevata in GBS fiancheggiato dalla sequenza di ciascuno dei due primer specifici GBS.

I target DNA amplificati sono rilevati con molecular beacon, un oigonucleotide a filo singolo a forma di foricina etichettato ad un’estremità con un inibitore e all’altra estremità con un colorante reporter fluorescente (fluoroforo). In assenza del target, la fluorescenza è inibita. In presenza del target, la struttura a foricina si apre all’ibridazione del beacon/target, comportando l’emissione di fluorescenza. Per il rilevamento delle sequenze amplificate GBS, il molecular beacon contiene il fluoroforo FAM all’estremità 5’ e la parte caratteristica della molecola dell’inibitore DABCYL non fluorescente all’estremità opposta dell’oigonucleotide. Per il rilevamento delle sequenze amplificate IC, il molecular beacon contiene il fluoroforo TET all’estremità 5’ e l’inibitore DABCYL all’estremità 3’. Ciascun ibrido target beacon diventa fluorescente ad una lunghezza d’onda caratteristica del fluoroforo utilizzato nel particolare molecular beacon. La quantità di fluorescenza in qualsiasi dato ciclo, o nei cicli seguenti, dipende dalla quantità di sequenze amplificate specifiche presenti in tale momento. Lo SmartCycler® esegue simultaneamente il monitoraggio della fluorescenza emessa da ciascun beacon, interpreta tutti i dati e alla fine del programma di ciclo fornisce un risultato finale (vedere Interpretazione dei risultati).

### Reagenti

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Quantità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saggio BD GeneOhm™ StrepB</td>
<td>50 test</td>
</tr>
<tr>
<td>Tampone (Sample buffer)</td>
<td>60 x 1 mL</td>
</tr>
<tr>
<td>Soluzione tampone EDTA tris</td>
<td></td>
</tr>
<tr>
<td>Provetta di lisi (Lysis tube)</td>
<td>50 provette</td>
</tr>
<tr>
<td>Perle di vetro</td>
<td></td>
</tr>
<tr>
<td>Master mix (Master Mix)</td>
<td>50 provette</td>
</tr>
<tr>
<td>&lt; 0,001% complesso polimerasi DNA</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% controllo interno - DNA non infettivo contenente sequenze di legame di primer GBS e una sequenza unica per l’ibridizzazione delle sonde</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% primer</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,002% sonde molecolari</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,05% dATP, dCTP, dGTP, dTTP</td>
<td></td>
</tr>
<tr>
<td>Siero albumina bovina</td>
<td></td>
</tr>
<tr>
<td>Carboidrati</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,005% DNA genomico non infettivo da Streptococcus pneumoniae</td>
<td></td>
</tr>
<tr>
<td>Controllo positivo (Positive Control)</td>
<td>50 provette</td>
</tr>
<tr>
<td>&lt; 0,001% complesso polimerasi DNA</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% controllo interno - DNA non infettivo contenente sequenze di legame di primer GBS e una sequenza unica per l’ibridizzazione delle sonde</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% primer</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,002% sonde molecolari</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,05% dATP, dCTP, dGTP, dTTP</td>
<td></td>
</tr>
<tr>
<td>Siero albumina bovina</td>
<td></td>
</tr>
<tr>
<td>Carboidrati</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% DNA GBS genomico non infettivo col gene cfb</td>
<td></td>
</tr>
<tr>
<td>Controllo negativo (Negative Control)</td>
<td>50 provette</td>
</tr>
<tr>
<td>&lt; 0,001% complesso polimerasi DNA</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,001% controllo interno - DNA non infettivo contenente sequenze di legame di primer GBS e una sequenza unica per l’ibridizzazione delle sonde</td>
<td></td>
</tr>
</tbody>
</table>
BD Diagnostics

BD GeneOhm™ StrepB

< 0,001% primer
< 0,002% sonde molecolari
< 0,05% dATP, dCTP, dGTP, dTTP
Siero albumina bovina
Carboidrati
< 0,005% DNA genomico non infettivo da Streptococcus pneumoniae

Diluente (Diluent)
Soluzione tampone HCl tris
MgCl₂
(NH₄)₂SO₄

Precauzioni

Questo test è solo per uso diagnostico in vitro.

- Non utilizzare il kit se è rotta la chiusura di sicurezza sul contenitore esterno.
- Non utilizzare i reagenti se i sacchetti protettivi sono aperti o danneggiati alla consegna.
- Chiudere rapidamente le borse protettive del Master Mix e dei controlli con la chiusura a cerniera dopo ciascun utilizzo.
- Non togliere l’essiccante dai sacchetti di Master Mix e controlli.
- Non usare i reagenti se l’essiccante non è presente nei sacchetti di Master Mix e controlli.
- I reagenti non sono intercambiabili tra i lotti.
- Non riunire reagenti di provette diverse anche se provengono dallo stesso lotto.
- Non utilizzare i reagenti dopo la relativa data di scadenza.
- Non scambiare i tappi tra i reagenti, in quanto esiste la possibilità di contaminazione che comprometterebbe i risultati del test.
- Evitare la contaminazione microbica e da deossiribonucleasi (DNAse) dei reagenti quando si rimuovono aliquote dalle provette. Si consiglia l’utilizzo di puntali per pipettatrice steril monouso con blocco a filtro privi di DNase o a spostamento positivo.
- Per evitare la contaminazione dell’ambiente con sequenze amplificate GBS, non aprire le provette di reazione dopo l’amplificazione.
- Utilizzare un nuovo puntale per ciascun campione o reagente.
- L’esecuzione del saggio al di fuori degli intervalli temporali consigliati può produrre risultati non validi. I campioni che non rientrano negli intervalli temporali specificati vanno ripetuti.
- È possibile sottoporre a test ulteriori controlli secondo le indicazioni o i requisiti delle normative locali, regionali e/o nazionali o delle organizzazioni di verifica.
- Nei casi in cui il laboratorio esegua anche test PCR a provetta aperta, utilizzare aree di lavoro separate e isolate per le attività di preparazione e amplificazione / rilevamento dei campioni. I rifornimenti e le apparecchiature vanno dedicati a ciascuna area e non vanno spostati da un’area all’altra. Devono essere sempre indossati guanti, che devono essere cambiati prima di passare da un’area all’altra o prima di manipolare reagenti liofilizzati.
- Trattare sempre i campioni come infettivi e in conformità alle procedure sicure di laboratorio quali ad esempio quelle descritte in Biosafety in Microbiological and Biomedical Laboratories e nel documento CLSI M29.
- Indossare abbigliamento protettivo e guanti monouso quando si trattano reagenti del kit. Lavare accuratamente le mani dopo aver eseguito il test.
- Non pipettare con la bocca.
- Non fumare, bere né mangiare in aree in cui sono maneggiati i campioni o i reagenti del kit.
- Smaltire i reagenti inutilizzati e i rifiuti in conformità alle normative nazionali, regionali, provinciali e locali.
Materiali forniti

- Tampone (Sample buffer)
- Provetta di lisi (Lysis tube)
- Master mix (Master Mix)
- Controllo positivo (Positive Control, PC)
- Controllo negativo (Negative Control, NC)
- Diluente (Diluent)
- Etichette di identificazione dei campioni

Conservazione, trattamento e stabilità

Campione prelevato

I campioni vanno mantenuti ad una temperatura compresa fra 2 °C e 30 °C durante il trasporto. Proteggere contro il congelamento o l’esposizione a calore eccessivo.

I campioni che possono essere sottoposti a test entro 24 ore possono essere mantenuti a temperatura ambiente; altrimenti, si consiglia che siano refrigerati. I campioni conservati a temperature comprese tra 2 °C e 8 °C sono stabili per un massimo di 6 giorni.

Reagenti

Nota: Le condizioni di conservazione devono rispettare le specifiche riportate su ogni busta. Le provette esterne alla loro sacca protettiva e non utilizzate entro il limite temporale specificato vanno scartate.

<table>
<thead>
<tr>
<th>Componenti del kit</th>
<th>Master mix e Controls (etichette a strisce bianche e rosse)</th>
<th>Lysis tube (tappo giallo)</th>
<th>Sample buffer e Diluent (rispettivamente tappo blu ed etichetta a strisce nere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busta sigillata</td>
<td>Temperatura</td>
<td>2-25 °C</td>
<td>2-25 °C</td>
</tr>
<tr>
<td></td>
<td>Stabilità</td>
<td>Data di scadenza</td>
<td>Data di scadenza</td>
</tr>
<tr>
<td>Busta aperta¹</td>
<td>Temperatura</td>
<td>2-8 °C</td>
<td>2-25 °C²</td>
</tr>
<tr>
<td></td>
<td>Stabilità</td>
<td>1 mese³</td>
<td>2 mesi³</td>
</tr>
</tbody>
</table>

¹ Una volta rotto il sigillo originale sulla busta, chiudere con cura la busta con la chiusura a cerniera dopo ciascun utilizzo e conservare a 2-8 °C.
² Sebbene questi reagenti possano essere conservati a temperatura ambiente, vanno conservati assieme ai rispettivi reagenti di accompagnamento dello stesso lotto a 2-8 °C.
³ Purché la sacca sia correttamente chiusa con la chiusura a cerniera dopo ciascun utilizzo.

<table>
<thead>
<tr>
<th>Componente del kit esterno alla propria busta protettiva</th>
<th>Master Mix e Controls (etichette bianche, rosse o verdi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provette non ricostituite</td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>15-25 °C</td>
</tr>
<tr>
<td>Stabilità</td>
<td>2 ore</td>
</tr>
</tbody>
</table>

Materiali necessari, ma non forniti

- BBL™ CultureSwab™ Liquid Stuart (catalogo Becton Dickinson n. 220099), Copan Transystem™ Liquid Stuart (catalogo Copan Italia International n. 141C.USE), Copan Venturi Transystem™ Liquid Stuart (catalogo Copan Diagnostics Inc. n. 141C.US), HealthLink TransPorter™ single Liquid Stuart (catalogo HealthLink n. 4432)
- Vortice Genie 2 (Fisher) con supporto per microprovette o equivalente; per trattare più campioni, è possibile utilizzare adattatori con più siti di mantenimento
- Micropipettatrici (intervallo accurato 1-50 µL)
- Puntali per pipettatrice steril privi di DNAse con blocco a filtro o a spostamento positivo
Istruzioni per l’uso

Prelievo di campioni

Al fine di ottenere un campione adeguato, la procedura per il prelievo di campioni deve essere seguita strettamente.

Utilizzando il tampone consigliato con mezzo liquido di Stuart (fare riferimento a Materiali necessari, ma non forniti), i campioni vaginali-rettali sono prelevati in base alla seguente procedura:

1. Rimuovere la quantità in eccesso di secrezione o escrezione dall’area vaginale;
2. Inserire con cura il tampone nel terzo inferiore della vagina e campionare le secrezioni dalla mucosa;
3. Inserire con cura lo stesso tampone, circa 2,5 cm oltre lo sfintere anale, e ruotare delicatamente per campionare i seni anali;
4. Ricollocare il tampone nel relativo contenitore;
5. Etichettare il contenitore;
6. Spedire i tamponi al laboratorio secondo le procedure operative standard dell’ospedale. Per campioni inviati ad un laboratorio esterno, il campione va protetto contro l’esposizione a calore eccessivo.
7. Al laboratorio, mantenere tutti i campioni a temperatura ambiente fino al momento del test (se entro 24 ore dal prelievo);
8. Fare riferimento alla sezione intitolata “Conservazione, trattamento e stabilità – Campioni prelevati” per la conservazione e il trattamento.

Preparazione del campione

Nota: Una provetta di Sample Buffer (Tampone, tappo blu) e una Lysis tube (Provetta di lisi, tappo giallo) sono necessarie per il test di ciascun campione. Rimuovere il numero necessario di provette dalle rispettive buste protettive, rimuovere l’aria in eccesso e chiudere rapidamente le buste con la chiusura a cerniera.

1. Collocare il dispositivo di prelievo (tampone) in una provetta di tampone campione (tappo blu).
2. Rompere lo stelo del campione e chiudere saldamente la provetta. Tenere il tampone per lo stelo in prossimità dell’orlo della provetta (utilizzare garza per ridurre al minimo i rischi di contaminazione). Sollevare il tampone di qualche millimetro (mm) dal fondo della provetta e piegare lo stelo contro il bordo della provetta per romperlo. Metodo alternativo: utilizzare forbici pulite per tagliare lo stelo. Accertarsi che il tappo si chiuda saldamente.
3. Lasciare a riposo per 5 minuti.
4. Mescolare con moto vorticoso ad alta velocità per 15 secondi.

Per trattare più campioni, è possibile utilizzare adattatori con più siti di mantenimento.
5. Trasferire 50 µL di sospensione cellulare alla provetta di lisi (tappo giallo); chiudere saldamente.
   Utilizzare un nuovo puntale per micropipettatrice per ogni campione.

6. Mescolare con moto vorticoso ad alta velocità per 5 minuti.
   Per trattare più campioni, è possibile utilizzare adattatori con più siti di mantenimento.

7. Centrifugare brevemente la provetta di lisi (rotazione veloce).
   A bassa velocità per 2 - 5 secondi, per portare il contenuto al fondo della provetta.

8. Riscaldare a 95 ± 2 ºC per 2 minuti.
   Utilizzare un blocco di riscaldamento a secco per provette da 1,5 mL o bagno d’acqua.

9. Collocare la provetta di lisi su ghiaccio o su un blocco di raffreddamento.

**Procedura di saggio BD GeneOhm™ StrepB**

**Nota:** Una provetta **Master Mix** (Master Mix, provetta SmartCycler® con etichetta bianca) è necessaria per il test di ciascun campione. Una provetta di **Positive control** (controllo positivo, etichetta rossa) e una provetta di **Negative control** (controllo negativo, etichetta verde) sono necessarie per ciascuna analisi di un saggio. Una provetta di Diluent (diluente, etichetta con striscia nera) è necessaria per la preparazione di un numero massimo di 40 reazioni PCR. Rimuovere il numero necessario di provette dalle rispettive buste protettive, rimuovere l’aria in eccesso e chiudere rapidamente le buste con la chiusura a cerniera.

Preparare solo il numero di provette SmartCycler sufficiente a riempire i moduli disponibili I-CORE® sullo strumento SmartCycler®.

1. Collocare le provette Master Mix, di controllo positivo e negativo da sottoporre a test sul blocco di raffreddamento SmartCycler ®.
   Identificare le provette Master mix (etichetta bianca) sul tappo con le etichette di identificazione del campione fornite col kit.

2. Aprire le provette Master Mix, di controllo positivo e negativo.
   Tenere saldamente la provetta per la parte scanalata superiore e sollevare il tappo con un movimento verticale verso l’alto. Non sollevare orizzontalmente. **Evitare di toccare le finestre di rilevamento ottico ai bordi inferiori della provetta e l’area inferiore a forma di rombo.**

3. Aggiungere 25 µL di diluente (etichetta nera) a tutte le provette; chiudere parzialmente le provette Master Mix.
   Erogare il diluente nel serbatoio (parte superiore) di ciascuna provetta.

4. Aggiungere 1,5 µL di ciascun lisato ad una diversa provetta Master Mix; chiudere saldamente le provette.
   Prestare attenzione a non aspirare le perle quando si pipetta nella provetta di lisi. Dopo l’aggiunta del campione, pipettare in alto e in basso 2-3 volte nel serbatoio per accertarsi del trasferimento del volume completo. Chiudere la provetta di lisi e la provetta Master Mix. Utilizzare un nuovo puntale per micropipettatrice per ogni campione.

5. Chiudere le provette di Positive e Negative control.
   Il Negative control dovrebbe essere l’ultimo campione preparato per un dato saggio (cioè tutti i campioni sono analizzati contemporaneamente sullo SmartCycler®).

6. Centrifugare tutte le provette di reazione per 5-10 secondi.
   Utilizzare la microcentrifuga appositamente adattata fornita con lo strumento SmartCycler®.

7. Mantenere le provette di reazione a 2-8 °C sul blocco di raffreddamento dello SmartCycler® prima del caricamento sullo strumento.
   I lisati restanti vanno congelati a -20 ± 5 °C per l’utilizzo successivo, se necessario.

8. Poco prima di caricare le provette sullo strumento, prendere il BLOCCO DI RAFFREDDAMENTO CON LE PROVETTE ANCORA IN POSIZIONE e MESColarLE CAPOVOLTE CON MOTO VORTICOSO per 5-10 secondi.

9. Creare un’analisi col protocollo di saggio BD GeneOhm™ StrepB.
   Fare riferimento al Manuale per l’operatore del software SmartCycler® Dx se necessario. Prima di avviare l’analisi vanno immessi i parametri di identificazione per i campioni.
10. Inserire ciascuna provetta di reazione in un modulo I-CORE® dello SmartCycler® e chiudere il coperchio dell'I-CORE®.

Collocare i Positive e Negative control nella rispettiva posizione appropriata (vedere la sezione intitolata “Controllo della qualità”). Premere verso il basso tutte le provette saldamente in posizione.

11. Avviare l’analisi.

Controllo di qualità

Controlli positivi e negativi

Le procedure di controllo della qualità sono progettate in modo da controllare le prestazioni del saggio. Il controllo positivo ha lo scopo di controllare eventuali problemi importanti ai reagenti. Il controllo negativo è utilizzato per rilevare la contaminazione del reagente o quella ambientale (o trascinamento) da parte di sequenze amplificate di S. agalactiae o GBS. I controlli positivi e negativi controllano i campioni di saggio (controlli dell’analisi). Un controllo non valido invalida l’analisi. Infine, un controllo interno incorporato in ciascuna miscela di reazione ha lo scopo di monitorare l’inibizione PCR in ciascun campione.

Un controllo positivo e un controllo negativo devono essere eseguiti per ciascuna analisi del saggio sullo SmartCycler®. Il software assegna automaticamente la posizione dei controlli sullo strumento (fare riferimento al Manuale per l’operatore del software SmartCycler® Dx® Dx).

Controlli di trattamento dei campioni

È possibile testare i ceppi di controllo secondo le indicazioni o i requisiti delle normative locali, regionali e/o nazionali o delle organizzazioni di verifica. Una coltura di Streptococcus gruppo B (ad es. S. agalactiae, American Type Culture Collection, ATCC 12973) o un isolato clinico ben caratterizzato di S. agalactiae possono essere utilizzati da un controllo di trattamento dei campioni mentre una coltura di Streptococcus bovis (ad es. ATCC 33317) o di qualsiasi altro Streptococcus non gruppo B può essere utilizzata come controllo negativo esterno.

Trasferire 3 colonie di dimensione 1-2 mm da una piastra agar di sangue di pecora fresco in 3 mL di brodo al triptone di soia e far crescere fino ad un DE di 0,6 a 600 nm. Preparare diluizioni seriali in soluzione salina per ottenere una sospensione batterica di circa 10^6 CFU/mL. Immergere il tampone consigliato con mezzo liquido si Stuart (fare riferimento a Materiali necessari, ma non forniti) nella sospensione batterica, riportare il tampone nella sua custodia (per consentire il contatto col mezzo di traspporto), lasciare riposare a temperatura ambiente per 5 min e quindi sottoporre a test come campione clinico (fare riferimento alle sezioni intitolate Preparazione del campione e Procedure di saggio BD GeneOhm™ StrepB ’). Tutti i campioni e i controlli dovranno fornire risultati validi (nessun controllo non valido positivo o negativo e nessun controllo interno non riuscito).

Questa procedura può anche servire da procedura di controllo della qualità per dispositivi di prelievo di campioni. In tali casi, i test vanno eseguiti in triplicato secondo le istruzioni dell’inserto della confezione (Preparazione del campione), compresi i controlli. Tutti i campioni e i controlli dovranno fornire risultati validi (nessun controllo non valido positivo o negativo e nessun controllo interno non riuscito).

Per indicazioni generali sul controllo della qualità, l’utente può fare riferimento a CLSI MM39 e C2410.

Test di suscettibilità antimicrobica per pazienti allergiche alla penicillina

Nota: La soluzione tampone campione non dovrà influenzare la vitalità dell'organismo. Tuttavia, l’utilizzo della soluzione tampone nelle colture non è stato valutato. Un secondo tampone può essere ottenuto dalle donne per consentire il svolgimento di un test di suscettibilità antimicrobica. I laboratori potrebbero scegliere di convalidare altri metodi. Le procedure per la coltivazione e i test di suscettibilità antimicrobica sono disponibili presso i CDC2.

Interpretazione dei risultati

L’algoritmo decisionale per il saggio BD GeneOhm™ StrepB è incorporato nel software SmartCycler®. L’interpretazione dei risultati del saggio è eseguita in base ai seguenti criteri:
<table>
<thead>
<tr>
<th>Risultato del saggio riportato</th>
<th>Risultato IC riportato</th>
<th>Interpretazione del risultato</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG (NEG)</td>
<td>PASS (SUPERATO)</td>
<td>Nessun DNA GBS rilevato, presunto negativo per GBS o il numero di organismi potrebbe essere inferiore al limite di rilevamento del saggio</td>
</tr>
<tr>
<td>POS (POS)</td>
<td>NA (NA)</td>
<td>DNA GBS rilevato, presunto positivo per GBS</td>
</tr>
<tr>
<td>Unresolved (Non chiaro)</td>
<td>FAIL (NON RUSCITO)</td>
<td>Non chiaro–campione inibitorio o problema del reagente</td>
</tr>
<tr>
<td>ND (ND)</td>
<td>ND (ND)</td>
<td>Non determinato a causa di problema del modulo I-Core® (con codici di avvertenza o di errore A)</td>
</tr>
</tbody>
</table>

IC = Internal Control (Controllo interno); NA = non applicabile; ND = non determinato.

A Fare riferimento al Manuale per l’operatore del software SmartCycler® Dx per l’interpretazione dei codici di avvertenza e di errore.

Un controllo positivo o negativo non valido invalida l’analisi del saggio. In tali casi, i risultati del saggio ottenuti in tale analisi sono non validi e non devono essere riportati. La mancata validità di un’analisi del saggio o i codici di errore o le avvertenze dello strumento sono riportati su schermo e sui rapporti. Prima di riportare i risultati GBS, verificare sempre che l’analisi del saggio sia valida. Fare riferimento al Manuale per l’operatore del software SmartCycler® Dx per la stampa dei risultati.

Analisi del saggio non valida

Utilizzando lisati congelati, preparare nuove provette di reazione per tutti i campioni clinici entro tale analisi del saggio assieme a nuove provette di controllo.

Campioni non chiari

Ripetere il test col corrispondente lisato congelato del campione. È stato dimostrato che l’effetto del ciclo di congelamento-scongelamento è di ridurre le sostanze inibitorie di PCR.

Campione non determinato a causa di problema del modulo I-CORE®

Ripetere il test col corrispondente lisato congelato del campione. Per l’interpretazione dei messaggi di codice di avvertenza o di errore, fare riferimento al Manuale per l’operatore del software SmartCycler® Dx.

Limiti della procedura

- Le prestazioni di questo test sono state stabilite con lo strumento SmartCycler®, con campione vaginale-rettale da pazienti antepartum e intrapartum prelevati con Copan Venturi Transystem® con mezzo liquido di Stuart. Per questo motivo, questo prodotto può essere utilizzato solo con lo strumento SmartCycler®. Per questo motivo, questo prodotto può essere utilizzato solo con lo SmartCycler®; inoltre, non si consiglia l’utilizzo di un sistema di prelievo e trasporto di campioni diverso da quelli elencati nella sezione Materiali necessari, ma non forniti. Altre sorgenti cliniche non sono state valutate e le caratteristiche prestazionali di questo test sono ignote su altri tipi di campioni.

- Possono verificarsi risultati di test negativi da prelievo, trattamento o conservazione impropri di campioni, presenza di inibitore, errore tecnico, miscela di campioni o poiché il numero di organismi nel campione è inferiore alla sensibilità analitica del test. Un’attenza conformità alle istruzioni fornite in questo inserto e nel Manuale per l’operatore del software SmartCycler® Dx è necessaria per evitare risultati erronei. L’utilizzo di questo test va limitato al personale addestrato alla procedura e all’utilizzo dello SmartCycler®.

- Poiché il rilevamento dello Streptococcus gruppo B dipende dal numero di organismi presenti nel campione, l’affidabilità dei risultati dipende dalla correttezza del prelievo, del trattamento e della conservazione dei campioni.

- I risultati del saggio BD GeneOhm™ StrepB potrebbero talvolta essere non chiari o invalidati a causa di un controllo non valido e potrebbero richiedere un nuovo test che potrebbe comportare un ritardo nell’ottenimento dei risultati.

- Potrebbero verificarsi risultati falsi negativi anche a causa della presenza di sostanze inibitorie della polimerasi; il controllo interno presente nel Master Mix consente il rilevamento di tali sostanze.
• Le mutazioni nelle regioni di legame della sonda o del primer potrebbero influenzare il rilevamento, particolarmente quando gli organismi sono presenti a meno di 10^4 organismi. Non esiste alcun rapporto pubblicato di isolati o ceppi GBS mancanti del gene cfb. Se si verifichesse un simile caso, il saggio BD GeneOhm™ StrepB fornirebbe un risultato falso negativo. Nessun isolato GBS fenotipicamente CAMP-negativo è stato valutato col saggio BD GeneOhm™ StrepB.

• Un risultato positivo del test non indica necessariamente la presenza di organismi vitali. È tuttavia presuntivo per la presenza di *Streptococcus* gruppo B.

• I metodi per la coltivazione dalla soluzione tampone campione BD GeneOhm™ StrepB non sono stati valutati. I laboratori devono convalidare le proprie procedure di coltivazione o prelevare un secondo campione da tenere come riserva.

• I risultati del saggio BD GeneOhm™ StrepB vanno utilizzati come ausilio per le osservazioni cliniche e altre informazioni disponibili al medico. Il test non è previsto per differenziare i trasportatori di *Streptococcus* gruppo B da quelli con infezione streptococcica. I risultati del test potrebbero anche essere influenzati da terapia antibiotica concorrente, quindi il successo o il fallimento terapeutici non possono essere valutati utilizzando questo test in quanto il DNA potrebbe persistere dopo la terapia antimicrobica.

• Sebbene non vi sia alcuna esigenza di preparazione dei reagenti e le principali operazioni tecniche includano la pipettatura, una buona tecnica di laboratorio è essenziale per la corretta esecuzione di questo saggio. A causa dell'elevata sensibilità analitica di questo test, va prestata estrema attenzione a preservare la purezza di tutti i reagenti, particolarmente nei casi in cui più aliquote sono prelevate da una singola provetta.

• Si consigliano procedure di laboratorio valide e l'utilizzo di guanti per evitare la contaminazione dei campioni o dei reagenti.

**Sostanze interferenti**

Tra le potenziali sostanze interferenti sono da annoverare, in modo non limitativo: liquido amniotico, meconio, sangue, feci, lubrificante, urina e mucosa vaginale. La presenza di eccessive secrezioni vaginale (antepartum o intrapartum) potrebbe inibire PCR e fornire risultati non chiari. Per questo motivo, si consiglia di ripulire l'area vaginale prima del campionamento. Anche la presenza di sangue eccessivo potrebbe condurre ad inibizione di PCR e ad un risultato non chiaro.

In uno studio di ricerca che interessava 803 campioni vaginali/rettali da pazienti in maternità intrapartum, le sostanze potenzialmente interferenti menzionate in precedenza sono state riportate per il 63% dei campioni prelevati. Solo l'1% (10/803) dei campioni ha fornito risultati diversi da quelli di BD GeneOhm™ StrepB. Di questi, non esisteva alcuna sostanza potenzialmente interferente riportata per 6 campioni, liquido amniotico per 1 e una combinazione di sostanze per 3 di loro. Tutti tranne uno sono stati risolti dopo un ciclo di congelamento-scongelamento del campione. Per il campione che non è stato possibile risolvere, non è stata osservata alcuna sostanza potenzialmente interferente.

**Valori attesi**

Circa dal 10% al 30% delle donne in gravidanza sono colonizzate con GBS nella vagina o nel retto². La colonizzazione da GBS può essere transiente, cronica o intermittente. Lo screening delle colture sia della vagina sia del retto per GBS nell’ultima fase della gestazione durante il trattamento prenatale può rilevare le donne che saranno verosimilmente colonizzate con GBS al momento del parto. Nello studio di ricerca per BD GeneOhm™ StrepB, la frequenza di colonizzazione complessiva al momento del parto, determinata con la tecnica della coltura, era del 18,6% con un intervallo dal 9,1% al 28,7% nei diversi siti clinic. Con BD GeneOhm™ StrepB, complessivamente, il 20,1% delle donne intrapartum era positivo. Oltre allo screening intrapartum, anche un sottoinsieme di donne (674) è stato sottoposto a screening della coltura prematura. Di queste, l’11,7% era positivo durante il test antepartum.

Complessivamente, il 10,2% di queste donne aveva risultati della coltura antepartum diversi da quelli della coltura intrapartum e l’11,6% aveva risultati della coltura antepartum diversi dai risultati intrapartum di BD GeneOhm™ StrepB. In altri studi, sono state riportate sensibilità dell’87%¹¹ (83-92% CI) e del 69%,¹² (57-79% CI) e specificità del 96%¹¹ (95-98% CI) e del 92%¹² (89-94% CI) per colture nell’ultima fase prenatale per identificare lo stato della colonizzazione al momento del parto.
Caratteristiche prestazionali

Prestazioni cliniche

Le caratteristiche prestazionali del saggio BD GeneOhm™ StrepB sono state determinate in uno studio di ricerca prospettivo a più siti: cinque istituzioni con servizi di maternità, 2 in Canada e 3 negli U.S.A. Ciascuna istituzione aveva avviato un programma di screening basato su colture. Il test è stato eseguito in laboratori clinici affiliati a ciascuna istituzione. Per poter partecipare allo studio, le donne dovevano fornire consenso scritto, essere in travaglio e non avere alcuna controindicazione all’esame vaginale (ad es. sanguinamento). Non esisteva inoltre alcuna evidenza di placenta previa, nessuna indicazione urgente di procedere al parto e nessun antibiotico era stato utilizzato nella settimana precedente al ricovero. Lo studio non prendeva in considerazione i tempi per il parto per le pazienti.

Il metodo di riferimento utilizzato era la tecnica di coltura consigliata dai Centers for Disease Control and prevention; vale a dire, coltura microbiologica nel mezzo brodo selettivo (brodo Todd-Hewitt integrato da $15 \mu g/mL$ di acido nalidissico e $10 \mu g/mL$ di colistina, oppure con $8 \mu g/mL$ di gentamicina e $15 \mu g/mL$ di acido nalidissico: tra gli altri mezzi disponibili in commercio sono da segnalare il brodo SBM o il brodo Lim), seguita da incubazione per tutta la notte e sottocoltura su mezzo agar di sangue solido. È stata eseguita identificazione specifica di colonie evocative di GBS con test di agglutinazione sui vetrini.

Ottocentoottantuno (881) donne hanno acconsentito a partecipare allo studio. Di queste, 78 sono state escluse in quanto la donna aveva cambiato parere o non era in travaglio o a causa di deviazioni rispetto al protocollo. Per questo motivo, le caratteristiche prestazionali di BD GeneOhm™ StrepB sono state determinate a partire dai risultati di 803 pazienti in maternità intrapartum.

Due campioni vaginali/rettali da ciascuna paziente in maternità intrapartum sono stati raccolti col tampone consigliato con mezzo liquido di Stuart (fare riferimento a Materiali necessari, ma non forniti) utilizzando la procedura consigliata dai CDC\textsuperscript{2}. Un tampone è stato sottoposto a test con la tecnica di coltura consigliata dai CDC e un tampone col saggio BD GeneOhm™ StrepB. I risultati dello studio sono presentati nelle Tabelle da 1 a 4.

### Tabella 1. Risultati ottenuti col saggio BD GeneOhm™ StrepB in riferimento alla tecnica di coltura.

<table>
<thead>
<tr>
<th>Saggio BD GeneOhm™ StrepB</th>
<th>Positivo</th>
<th>Negativo</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecnica di coltura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivo</td>
<td>140\textsuperscript{A}</td>
<td>9</td>
<td>149</td>
</tr>
<tr>
<td>Negativo</td>
<td>27\textsuperscript{B}</td>
<td>626\textsuperscript{C}</td>
<td>653</td>
</tr>
<tr>
<td>Totale</td>
<td>167</td>
<td>635</td>
<td>802\textsuperscript{D}</td>
</tr>
</tbody>
</table>

\textsuperscript{A} Quattordici (14) campioni erano inizialmente negativi alla coltura, ma all’esame sono stati rilevati essere positivi alla coltura; 1 dei 14 era risultato inizialmente non chiaro ma ad un test successivo ha dato un risultato positivo; 3 campioni che erano inizialmente positivi al saggio BD GeneOhm™ StrepB sono stati sottoposti a nuovo test a causa di controlli non validi (positivi e negativi) e sono risultati positivi.

\textsuperscript{B} Un (1) campione che era inizialmente positivo col saggio BD GeneOhm™ StrepB è stato sottoposto a nuovo test a causa di un controllo non valido ed è risultato positivo ad un nuovo test.

\textsuperscript{C} Dodici (12) campioni che erano inizialmente negativi col saggio BD GeneOhm™ StrepB sono stati sottoposti a nuovo test a causa di un controllo non valido e tutti sono risultati negativi; 8 campioni che inizialmente hanno dato un risultato non chiaro hanno dato un risultato negativo dopo un nuovo test.

\textsuperscript{D} Un (1) campione che dava un risultato inizialmente non chiaro restava non chiaro ad un nuovo test e non è stato incluso nella tabella precedente.

L’esame dei campioni che hanno fornito risultati positivi alla coltura/negativi a BD GeneOhm™ StrepB (n=9) ha rivelato che tutti i campioni avevano un carico batterico sotto il limite di rilevamento di BD GeneOhm™ StrepB. È stato anche mostrato che tutti gli isolati recuperati da piastre di coltura positive hanno fornito un risultato positivo con BD GeneOhm™ StrepB. L’esame dei campioni che hanno fornito risultati negativi alla coltura / positivi a BD GeneOhm™ StrepB (n=27) ha rivelato che tutti i campioni contenevano la corretta regione del target (comprese le regioni di legame del primer) del gene \textit{cfb} e che il prodotto amplificato era quello atteso con BD GeneOhm™ StrepB.

La prevalenza complessiva della popolazione dello studio era del 18,6%, con un intervallo da 9,1% a 28,7% ai diversi siti clinici. Il valore predittivo negativo era di 98,6% (95% CI, 97,3% - 99,3%) e il valore predittivo positivo era di 83,8% (95% CI, 77,4% - 89,1%).
Tabella 2. Prestazioni cliniche del saggio BD GeneOhm™ StrepB in riferimento alla tecnica di coltura consigliata da CDC.

<table>
<thead>
<tr>
<th>Sito</th>
<th>Sensibilità clinica</th>
<th>Specificità clinica</th>
<th>N. di campioni non chiari</th>
<th>N. di analisi non valide/totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sito 1</td>
<td>93% (n=15) (68%-100%)(^A)</td>
<td>93% (n=150) (87%-96%)(^A)</td>
<td>5</td>
<td>2/55</td>
</tr>
<tr>
<td>Sito 2</td>
<td>88% (n=25) (69%-97%)</td>
<td>100% (n=62) (97%-100%)</td>
<td>0</td>
<td>0/38</td>
</tr>
<tr>
<td>Sito 3</td>
<td>99% (n=77) (93-100%)</td>
<td>97% (n=350) (94%-98%)</td>
<td>1</td>
<td>1/56</td>
</tr>
<tr>
<td>Sito 4</td>
<td>85% (n=13) (54%-98%)</td>
<td>100% (n=35) (98%-100%)</td>
<td>1</td>
<td>1/21</td>
</tr>
<tr>
<td>Sito 5</td>
<td>89% (n=19) (67%-99%)</td>
<td>93% (n=56) (82%-98%)</td>
<td>3</td>
<td>1/22</td>
</tr>
<tr>
<td>Totale:</td>
<td>94% (n=149) (89%-97%)</td>
<td>96% (n=653) (94% - 97%)</td>
<td>10(^B)</td>
<td>5/192</td>
</tr>
</tbody>
</table>

\(^A\) Intervalli di confidenza binomiale 95%.
\(^B\) Tutti i campioni erano non chiari a causa di controlli interni non superati indicativi di inibizione o di problemi del reagente. Nove (9) dei 10 sono stati risolti con un nuovo test.

Tabella 3. Stratificazione dei risultati in base al tempo trascorso tra il prelievo dei campioni e il test col saggio BD GeneOhm™ StrepB.

<table>
<thead>
<tr>
<th>Tempo trascorso (ore)</th>
<th>Positivo alla coltura</th>
<th>Negativo alla coltura</th>
<th>% di accordo (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positivo BD GeneOhm™</td>
<td>Negativo BD GeneOhm™</td>
<td></td>
</tr>
<tr>
<td>da 0 a 4</td>
<td>11</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>da 4 a 8</td>
<td>32</td>
<td>3</td>
<td>220</td>
</tr>
<tr>
<td>da 8 a 12</td>
<td>9</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>da 12 a 24</td>
<td>41</td>
<td>2</td>
<td>143</td>
</tr>
<tr>
<td>da 24 a 48</td>
<td>35</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>&gt; 48</td>
<td>12</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Totale:</td>
<td>140</td>
<td>9(^A)</td>
<td>626</td>
</tr>
</tbody>
</table>

\(^A\) Tutti i campioni avevano un carico batterico sotto il limite di rilevamento di BD GeneOhm™ StrepB.
\(^B\) Tutti i campioni contenevano la corretta regione del target (comprese le regioni di legame del primer) del gene cfβ e che il prodotto amplificato era quello atteso con BD GeneOhm™ Strep B.

La rottura della membrana non influenzava le prestazioni del saggio BD GeneOhm™ StrepB. Utilizzando la presenza o l’assenza di liquido amniotico e/o meconio in campioni prelevati come indicazione di rottura della membrana, la sensibilità e la specificità del saggio BD GeneOhm™ StrepB erano le stesse abituali antepartum o intrapartum (Tabella 4).

Tabella 4. Prestazioni del saggio BD GeneOhm™ StrepB antepartum e intrapartum.

<table>
<thead>
<tr>
<th></th>
<th>Sensibilità</th>
<th>Specificità</th>
<th>% accordo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antepartum</td>
<td>95% (53/56) (85-99%)(^A)</td>
<td>96% (301/315) (93-98%)</td>
<td>95% (354/371) (93-97%)</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>94% (87/93) (86-98%)</td>
<td>96% (325/338) (94-98%)</td>
<td>96% (412/431) (93-97%)</td>
</tr>
</tbody>
</table>

\(^A\) Intervalli di confidenza binomiale 95%.

Specificità analitica

Sono stati sottoposti a test il DNA genomico da 99 ceppi ATCC che rappresentavano 27 specie di streptococchi, altre specie filogeneticamente correlate a S. agalactiae, altri batteri e lieviti comunemente rilevati nella flora vaginale e rettale e nel DNA umano. Tra questi erano 9 organismi che non erano stati riferiti trasportare il gene cfβ ma provocano attività simile a CAMP. Per il DNA microbico, sono stati utilizzati 1,5 ng (2x10^5 copie equivalenti di genoma per reazione PCR o 10^8 copie equivalenti di genoma/mL). Per il DNA umano, sono stati utilizzati da 75 a 233 ng (fino a 1,4x10^5 copie di genoma per reazione o 10^8 copie/mL). La specificità era del 100%.

Sensibilità analitica

La sensibilità analitica (limite di rilevamento o LOD (Limit of Detection)) del saggio BD GeneOhm™ StrepB è stata determinata con 12 ceppi di S. agalactiae in rappresentanza di 11 varianti o sierotipi noti. La coltura quantificata e il DNA genomico purificato diluito nella soluzione tampone campione del saggio
BD GeneOhm™ StrepB sono stati sottoposti a test in 5 replicati. Il LOD è definito come la minima concentrazione alla quale tutti i replicati sono risultati positivi al test.

Il LOD del saggio BD GeneOhm™ StrepB per *S. agalactiae*, sierotipi e varianti Ia, Ib/c, II, IIC, IIR, III, IIIc, IIIIR, V e VR, varia tra 10 e 50 copie di genoma per reazione con una mediana di 25 copie di genoma per reazione. Il LOD in CFU è da 3 a 9 CFU/reazione. Prendendo in considerazione il fattore di diluizione dovuto al trattamento dei campioni, ciò si traduce in $10^3 - 10^4$ CFU/tampone. La seguente tabella descrive in dettaglio la concentrazione minima di ciascun sottotipo, fornendo un risultato positivo in tutti i 5 replicati.

Tabella 5. LOD ottenuto per ciascun sierotipo sottoposto a test.

<table>
<thead>
<tr>
<th>Sierotipo</th>
<th>Copie di genoma/reazione</th>
<th>CFU/reazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 12973 (II)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>IIR</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Ia/c</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>VR</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Ia</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Ib/c</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIR</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>IIIc</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>IIcA</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

^A Per il sierotipo IIC, esiste una mancata corrispondenza in una delle regioni di legame del primer.

Riproducibilità

Un gruppo di 10 campioni simulati (da R1 a R10) con concentrazioni variabili di GBS e dei due controlli (positivo e negativo) forniti col saggio BD GeneOhm™ StrepB è stato sottoposto a test in triplicato in tre giorni diversi a ciascuno dei 3 siti (10 campioni più 2 controlli sottoposti a test X 3 X 3 giorni X 3 siti). Per lo studio è stato utilizzato un solo lotto di reagente.

Tabella 6. Riassunto dei risultati di riproducibilità.

<table>
<thead>
<tr>
<th>ID del campione^A</th>
<th>Sito 1</th>
<th>Sito 2</th>
<th>Sito 3</th>
<th>Accordo totale</th>
<th>Accordo % totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negativo</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Negativo</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Debolmente positivo</td>
<td>3/9</td>
<td>7/9</td>
<td>8/9</td>
<td>18/27</td>
<td>66%</td>
</tr>
<tr>
<td>Debolmente positivo</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positivo</td>
<td>8/9</td>
<td>9/9</td>
<td>9/9</td>
<td>26/27</td>
<td>96%</td>
</tr>
<tr>
<td>Positivo</td>
<td>9/9A</td>
<td>9/9B</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Positivo</td>
<td>9/9A</td>
<td>9/9B</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Fortemente positivo</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Fortemente positivo</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Fortemente positivo</td>
<td>9/9</td>
<td>9/9</td>
<td>9/9</td>
<td>27/27</td>
<td>100%</td>
</tr>
<tr>
<td>Controllo pos.</td>
<td>3/3C</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Controllo neg.</td>
<td>3/3C</td>
<td>9/9</td>
<td>9/9</td>
<td>21/21</td>
<td>100%</td>
</tr>
<tr>
<td>Accordo totale</td>
<td>88/96</td>
<td>106/108</td>
<td>107/108</td>
<td>301/312</td>
<td>96,5%</td>
</tr>
<tr>
<td>% accordo</td>
<td>91,6%</td>
<td>98,1%</td>
<td>99,1%</td>
<td>96,5%</td>
<td></td>
</tr>
</tbody>
</table>

^A Tutti i campioni positivi hanno quantità variabili di GBS.
^B Campione inizialmente non chiaro ma che dopo un nuovo test ha fornito il risultato atteso.
^C Tutti i replicati che abbiamo sottoposto a test come singola analisi invece di tre analisi separate di 10 campioni e 2 controlli.
References / Références / Referenzen / Referencias / Riferimenti


This kit is sold under license from the Public Health Research Institute of the City of New York, Inc. and may be used under the PHRI patent rights only for human in vitro clinical diagnostics.

The purchase of this product allows the purchaser to use it for amplification and detection of nucleic acid sequences for providing human in vitro diagnostics. No general patent or other license of any kind other than this specific right of use from purchase is granted hereby.

With sale of any kits (label license in package insert): “The purchase of this product includes a limited, non-transferable license under U.S. Patent No. 6,787,338, owned by the University of Utah Research Foundation and licensed to Idaho Technology, Inc., to use only the enclosed amount of product according to the specified protocols. No right is conveyed, expressly, by implication, or by estoppel, to use any instrument or system under any claim of U.S. Patent No. 6,787,338, other than for the amount of product contained herein.”


L’achat de ce produit permet à l’acheteur de l’utiliser pour procéder à une amplification et à une détection de séquences d’acides nucléiques lors de diagnostics cliniques in vitro chez l’humain. Aucun brevet général ou licence, autre que le droit d’utilisation spécifique conféré par l’achat, n’est octroyé par les présentes.

L’achat de ce produit comprend une licence limitée, non-transférable protégée par le brevet américain n° 6,787,338, appartenant à University of Utah Research Foundation et autorisé sous licence à Idaho Technology, Inc., uniquement pour l’utilisation de la quantité incluse de produit conformément aux protocoles spécifiés. Il n’est conféré aucun droit, explicite, implicite ou par préclusion, permettant d’utiliser un instrument ou un système sous une revendication quelconque du brevet américain N° 6,787,338, autre que pour la quantité de produit indiquée dans le présent document.


Este equipo se vende bajo licencia del Public Health Research Institute of the City of New York, Inc. (PHRI) y puede ser utilizado únicamente para diagnóstico clínico in vitro en seres humanos, según los derechos de patente del PHRI.

La compra de este producto permite al comprador utilizarlo para la amplificación y detección de secuencias de ácido nucleico en los diagnósticos clínicos in vitro en seres humanos. No se otorga por el presente documento ninguna patente general ni ninguna otra licencia de cualquier tipo, aparte del derecho de utilización específica conferido por la compra.

La adquisición de este producto incluye una licencia limitada no transferible bajo la patente de los EE.UU. Nº 6.787.338, propiedad de la Fundación de Investigación de la Universidad de Utah y licenciada a Idaho Technology, Inc., para utilizar solamente la cantidad adjunta del producto de conformidad con los protocolos especificados. No se concede ningún derecho, expreso o implícito, ni por impedimento, para utilizar ningún instrumento o sistema bajo ninguna aﬁrmación de la patente de los EE.UU. Nº 6.787.338, más que para la cantidad de producto aquí contenida.

Questo kit è venduto sotto licenza dal Public Health Research Institute della City of New York, Inc. e può essere utilizzato nell’ambito dei diritti del paziente PHRI solo per la diagnostica clinica umana in vitro.

L’acquisto di questo prodotto consente all’acquirente di utilizzarlo per l’amplificazione e il rilevamento delle sequenze di acidi nucleici per la fornitura di diagnostica umana in vitro. Con la presente non è concesso alcun brevetto generale o altra licenza di alcun tipo diversa da questo speciﬁco diritto di utilizzo conferito dall’acquisto.

Con l’acquisto del suddetto prodotto viene altresì conferita una licenza d’uso limitata e non trasferibile, in conformità con il brevetto N° 6.787.338 depositato negli Stati Uniti, detenuto dalla University of Utah Research Foundation e concesso in licenza alla Idaho Technology, Inc. esclusivamente per l’utilizzo del quantitativo di prodotto accluso, conformemente con i protocolli indicati. Peraltro, non viene conferito alcun diritto, esplicito, implicito o preclusivo, in relazione all’uso di strumenti o sistemi, in virtù dei diritti derivanti dal brevetto N° 6.787.338 depositato negli Stati Uniti, salvo per quanto attiene al quantitativo di prodotto di cui sopra.
Index of symbols / Table des symboles / Symbolindex / Índice de símbolos / Indice dei simboli

<table>
<thead>
<tr>
<th>Symbol / Symbole / Símbolo / Simbolo</th>
<th>Meaning / Signification / Bedeutung / Significado / Significato</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>Catalog number / Référence du Catalogue / Bestellnummer / Número de Catálogo / Numero di catalogo</td>
</tr>
<tr>
<td></td>
<td>In Vitro Diagnostic use / Aux fins de Diagnostic In Vitro / In-vitro-Diagnostika / Para fines de Diagnóstico in Vitro / Uso diagnostico In Vitro</td>
</tr>
<tr>
<td></td>
<td>Manufacturer / Fabricant / Hersteller / Fabricante / Produttore</td>
</tr>
<tr>
<td></td>
<td>Authorized european representative / Représentant européen autorisé / Bevollmächtigter in der Europäischen Gemeinschaft / Representante europeo autorizado / Rappresentante europeo autorizzato</td>
</tr>
<tr>
<td></td>
<td>Contains sufficient for &quot;n&quot; tests / Contenu suffisant pour « n » tests / Inhalt ausreichend für « n » Prüfungen / Contiene cantidad suficiente para &quot;n&quot; pruebas / Il contenuto è sufficiente per &quot;n&quot; test</td>
</tr>
<tr>
<td></td>
<td>Batch code / Code de lot / Chargenbezeichnung / Código de lote / Codice del lotto</td>
</tr>
<tr>
<td></td>
<td>Use by / Utiliser avant / Verwendbar bis / Fecha de caducidad / Data di scadenza</td>
</tr>
<tr>
<td></td>
<td>Temperature limitation / Limites de température / Temperaturbegrenzung / Limites de temperatura / Limiti di temperatura</td>
</tr>
<tr>
<td></td>
<td>Protect from light and moisture / Conserver à l’abri de la lumière et de l’humidité / Vor Licht und Feuchtigkeit schützen / Conservar al abrigo de la luz y la humedad / Proteggere da luce e umidità</td>
</tr>
<tr>
<td></td>
<td>Reseal bag after use / Refermer le sac après utilisation / Beutel nach Gebrauch wieder verschließen / Volver a cerrar la bolsa después de la utilización / Richiudere la sacca dopo l’uso</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use / Se référer aux instructions d’utilisation / Gebrauchsanweisung beachten / Ver las instrucciones de utilización / Consultare le istruzioni per l’uso</td>
</tr>
</tbody>
</table>

GeneOhm Sciences Canada, Inc.
2555 boul. du Parc-Technologique
Québec, QC, Canada, G1P 4S5

Australian Representative:
Becton Dickinson Pty Ltd.
4 Research Park Drive,
Macquarie University Research Park,
North Ryde,
NSW 2113 Australia

BD and BD logo are trademarks of Becton, Dickinson and Company. © 2014 BD