INTRODUCTION
BBL™ CHROMagar™ MRSA II/ BBL™ CHROMagar™ Staph aureus is a selective medium. CHROMagar MRSA II side is a differential chromogenic medium for the qualitative direct detection of nasal colonization by methicillin-resistant Staphylococcus aureus (MRSA) while CHROMagar™ Staph aureus is a medium for the isolation, enumeration and identification of Staphylococcus aureus.

II PERFORMANCE TEST PROCEDURE
A) BBL CHROMagar Staph aureus - Side I
1. Inoculate representative samples with dilutions of the cultures listed below.
 a. Streak inoculate with 10^3-10^4 CFUs of S. aureus and 10^4-10^5 CFUs of all other organisms.
 b. Incubate plates at 35 ± 2 °C in an aerobic atmosphere.
 c. Include Trypticase Soy Agar with 5% Sheep Blood (TSA II) plates as nonselective controls for all organisms.
2. Examine plates after 18 – 24 h for amount of growth and color formation.
3. Expected Results

<table>
<thead>
<tr>
<th>Organisms</th>
<th>ATCC</th>
<th>Recovery</th>
<th>Colony Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>60193</td>
<td>Inhibition (partial to complete)</td>
<td>Mauve</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>29212</td>
<td>Fair to heavy growth</td>
<td>Blue</td>
</tr>
<tr>
<td>*Staphylococcus aureus</td>
<td>25923</td>
<td>Fair to heavy growth</td>
<td>Mauve</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>33862</td>
<td>Fair to heavy growth</td>
<td>Mauve</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6538</td>
<td>Fair to heavy growth</td>
<td>Mauve to orange mauve</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>12228</td>
<td>Inhibition (partial to complete)</td>
<td>White</td>
</tr>
<tr>
<td>*Staphylococcus saprophyticus</td>
<td>15305</td>
<td>Fair to heavy growth</td>
<td>Light blue to green</td>
</tr>
<tr>
<td>*Proteus mirabilis</td>
<td>12453</td>
<td>Inhibition (partial to complete)</td>
<td>NA</td>
</tr>
</tbody>
</table>

NOTE: Inoculate side I then side II to minimize antibiotic carry over.

B) BBL CHROMagar MRSA II - Side II
1. Inoculate representative samples with dilutions of the cultures listed below.
 a. Streak the plates for isolation. For Enterococcus faecalis ATCC™ 29212 and Staphylococcus aureus ATCC 25923 and 29213, dilute cultures to yield 10^4-10^5 CFU/plate. For Staphylococcus aureus ATCC 33591 and 43300 dilute cultures to yield 10^3-10^4 CFU/plate.
 b. Incubate plates at 35 ± 2 °C in an aerobic atmosphere.
 c. Include Trypticase™ Soy Agar with 5% Sheep Blood (TSA II) plates as nonselective controls for all organisms.
2. Examine plates after 20 – 26 h for recovery, colony size, and color.
3. Expected Results

<table>
<thead>
<tr>
<th>Organisms</th>
<th>ATCC</th>
<th>Recovery</th>
<th>Colony Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecalis</td>
<td>29212</td>
<td>Inhibition (partial to complete)</td>
<td>No growth or non-mauve colonies</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>25923</td>
<td>Inhibition (partial to complete)</td>
<td>No growth or non-mauve colonies</td>
</tr>
<tr>
<td>*Staphylococcus aureus</td>
<td>29213</td>
<td>Inhibition (partial to complete)</td>
<td>No growth or non-mauve colonies</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>33591</td>
<td>Growth</td>
<td>Mauve</td>
</tr>
<tr>
<td>*Staphylococcus aureus</td>
<td>43300</td>
<td>Growth</td>
<td>Mauve</td>
</tr>
</tbody>
</table>

*Recommended organism strain for User Quality Control. Direct inoculation may be used for User Quality Control.¹

NOTE: Before using BBL CHROMagar MRSA II for the first time, training on the typical colony appearance of MRSA with defined strains is recommended.

III ADDITIONAL QUALITY CONTROL
1. Examine plates as described under “Product Deterioration.”
2. Visually examine representative plates to assure that any existing physical defects will not interfere with use.
3. Determine the pH potentiometrically at room temperature for adherence to the specification 7.0 ± 0.2 for BBL CHROMagar MRSA II (side II) and 6.8 ± 0.2 for BBL CHROMagar Staph aureus (side I).
4. Note the firmness of plates during the inoculation procedure.
5. Incubate uninoculated representative plates at 35 ± 2 °C for 72 h and examine for microbial contamination.
IV INTENDED USE

BBL CHROMagar Staph aureus is a selective medium for the isolation, enumeration and identification of *Staphylococcus aureus* from clinical and food sources. Confirmatory testing of typical isolates from clinical sources is not required. **BBL CHROMagar** Staph aureus (prepared plated medium) has been validated by the AOAC™ Research Institute under the Performance Tested Methods™ Program for the analysis of shell eggs, smoked salmon and cooked roast beef when using AOAC and ISO methods.¹ ² Confirmatory testing of mauve-colored colonies obtained from the food matrices mentioned above is required. U.S. Patent No. 6,548,268

BBL CHROMagar MRSA II is a selective and differential chromogenic medium for the qualitative direct detection of nasal colonization by methicillin-resistant *Staphylococcus aureus* (MRSA) to aid in the prevention and control of MRSA infections in healthcare settings. The test is performed on anterior nares swab specimens from patients to screen for MRSA colonization.

BBL CHROMagar MRSA II is not intended to diagnose, guide or monitor treatment for MRSA infections. A negative result does not preclude MRSA nasal colonization. Concomitant cultures are necessary for organism identification, susceptibility testing or epidemiological typing. U.S. Patent No. 7,632,657

V SUMMARY AND EXPLANATION

S. aureus is a well documented pathogen. It is responsible for infections ranging from superficial to systemic.³ ⁴ Due to the prevalence of this organism and its clinical implications, detection is of utmost importance. Staphylococcal food poisoning caused by *S. aureus* is one of the most common types of foodborne illness worldwide. Its detection and enumeration helps provide information about the potential health hazard of food, as well as being an indicator of poor hygiene.⁵ It is also recommended that this organism be used as an indicator of water quality.⁶

BBL CHROMagar Staph aureus is intended for the isolation, enumeration and identification of *S. aureus* based on the formation of mauve-colored colonies. The addition of chromogenic substrates to the medium facilitates the differentiation of *S. aureus* from other organisms.

An advantage **BBL CHROMagar** Staph aureus has over some traditional media, such as Baird-Parker Agar, is the ability to identify *S. aureus* in 24 h as opposed to 48 h.

MRSA are a major cause of nosocomial and life threatening infections. MRSA infections have been associated with a significantly higher morbidity, mortality and cost compared to methicillin-susceptible *S. aureus* (MSSA).² Selection of these organisms has been greatest in the healthcare setting; however, MRSA has also become more prevalent in the community.³ To control the transmission of MRSA, the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) have recommended guidelines, which include monitoring MRSA transmission, infection control programs to control transmission and implementation of active surveillance testing in hospital populations and areas where MRSA is not effectively controlled.²

BBL CHROMagar MRSA II is a selective and differential medium, which incorporates cefoxitin for the detection of MRSA from anterior nares specimens.

BBL CHROMagar MRSA II is a modified version of the existing formulation of **BBL CHROMagar** MRSA developed by A. Rambach and BD and is sold by BD under a licensing agreement with CHROMagar, Paris, France.

VI PRINCIPLES OF THE PROCEDURE

A) **BBL CHROMagar** Staph aureus was originally developed by A. Rambach, CHROMagar, Paris, France. BD, under a licensing agreement, has optimized this formulation utilizing proprietary intellectual property used in the manufacturing of the **BBL CHROMagar** Staph aureus prepared plated medium. Specially selected Difco™ peptones supply nutrients. The addition of selective agents inhibits the growth of gram-negative organisms, yeast and some gram-positive cocci. The chromogen mix consists of artificial substrates (chromogens), which release an insoluble colored compound when hydrolyzed by specific enzymes. This facilitates the detection and differentiation of *S. aureus* from other organisms. *S. aureus* utilizes one of the chromogenic substrates, producing mauve-colored colonies. The growth of mauve-colored colonies at 24 h is considered positive for *S. aureus* on **BBL CHROMagar** Staph aureus. Bacteria other than *S. aureus* may utilize other chromogenic substrates resulting in blue, blue-green, or if no chromogenic substrates are utilized, natural colored colonies.

B) **BBL CHROMagar** MRSA II medium permits the direct detection and identification of MRSA through the incorporation of specific chromogenic substrates and cefoxitin. MRSA strains will grow in the presence of cefoxitin⁴ and produce mauve colonies resulting from hydrolysis of the chromogenic substrate. Additional selective agents are incorporated for the suppression of gram-negative organisms, yeast and some other gram-positive cocci. Bacteria other than MRSA may utilize other chromogenic substrates in the medium resulting in the growth of colonies that are not mauve.

PRODUCER-SUPPLIED SAMPLES OF THIS TEST KIT MODEL WERE INDEPENDENTLY EVALUATED BY THE AOAC RESEARCH INSTITUTE AND WERE FOUND TO PERFORM TO THE PRODUCER’S SPECIFICATIONS AS STATED IN THE TEST KIT’S DESCRIPTIVE INSERT. THE PRODUCER CERTIFIES THIS KIT CONFORMS IN ALL RESPECTS TO THE SPECIFICATIONS ORIGINALLY EVALUATED BY THE AOAC RESEARCH INSTITUTE AS DETAILED IN Performance Tested Methods™ CERTIFICATE NUMBER 100503.

*See footnote below

VII REAGENTS

A) **BBL CHROMagar** Staph aureus - Side I

Approximate Formula ≈ Per Liter Purified Water

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromopeptone</td>
<td>40.0 g</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>25.0 g</td>
</tr>
<tr>
<td>Inhibitory Agents</td>
<td>0.07 g</td>
</tr>
<tr>
<td>Chromogen Mix</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Agar</td>
<td>14.0 g</td>
</tr>
</tbody>
</table>

*Adjusted and/or supplemented as required to meet performance criteria.
Table 1:

<table>
<thead>
<tr>
<th>CHROMagar Staph aureus- Side I</th>
<th>CHROMagar MRSA II - Side II</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth, mauve colonies</td>
<td>Growth, mauve colonies</td>
<td>MRSA</td>
</tr>
<tr>
<td>Growth, mauve colonies</td>
<td>No growth</td>
<td>Methicillin Sensitive S. aureus</td>
</tr>
<tr>
<td>Growth, NOT mauve colonies</td>
<td>No growth</td>
<td>Not S. aureus</td>
</tr>
<tr>
<td>Growth, NOT mauve colonies</td>
<td>Growth, NOT mauve colonies*</td>
<td>Negative for S. aureus</td>
</tr>
<tr>
<td>No growth</td>
<td>No growth</td>
<td></td>
</tr>
</tbody>
</table>

*Certain MRSA may produce non-mauve colonies on BBL CHROMagar MRSA II. If MRSA is suspected, sub-culture non-mauve colonies for further identification and susceptibility as necessary.

XI LIMITATIONS OF THE PROCEDURE

- A negative result should not be used as the sole basis for diagnosis, treatment, or management decisions. A negative result does not preclude MRSA nasal colonization.
- Minimize exposure (< 4 h) of BBL CHROMagar MRSA II / BBL CHROMagar Staph aureus to light both before and during incubation, as prolonged exposure may result in reduced recovery and/or coloration of isolates.
- Keep plates within the original sleeve wrapping and box for the entire storage period.
- BBL CHROMagar MRSA II Limitations
 - Performance of BBL CHROMagar MRSA II has been optimized for incubation at 35 – 37 °C for 20 – 26 h. Lower incubation temperatures (< 35 °C) and/or shorter incubation times (< 20 h) may reduce the sensitivity of BBL CHROMagar MRSA II.
• MRSA concentrations of lower than 10^6 CFU/mL may yield false negative results on BBL CHROMagar MRSA II (refer to Sensitivity - Analytical Reactivity).

• At 24 h, some strains of Chryseobacterium meningosepticum, Corynebacterium jeikeium, Enterococcus faecalis (VRE), Rhodococcus equi, and Bacillus cereus may produce mauve-colored colonies. If desired, a Gram stain may be performed.

• At 24 h, Staphylococcus simulans, S. epidermidis, and methicillin-susceptible Staphylococcus aureus may also produce mauve-colored colonies. If MRSA is not suspected, a coagulase test and antimicrobial susceptibility test (AST) may be performed.

• Nasal sprays containing fluticasone propionate, azelastine hydrochloride and oxymetazoline hydrochloride as well as OTC throat drops containing menthol demonstrated antibacterial activity.

• mecA-negative S. aureus demonstrated variable results on this medium and may grow if the oxacillin or mecA mediated cefoxitin MICs are at or near the resistant breakpoint.

• In the event of mixed infection, the accuracy of this device for detecting MRSA in the presence of other bacteria at a concentration higher than 1 x 10^6 CFU/mL has not been established and is therefore unknown.

• Resistance mechanisms other than mecA (i.e., borderline oxacillin-resistant Staphylococcus aureus-BORSAs, and modified Staphylococcus aureus-MODSAs), have not been extensively evaluated with BBL CHROMagar MRSA II, therefore the performance of BBL CHROMagar MRSA II with such resistance mechanisms is unknown.

• The growth requirements of certain strains of MRSA can lead to their partial or complete inhibition in culture.

• Surveillance testing determines the colonization status at a given time and could vary depending on patient treatment (e.g., decolonization regime), patient status (e.g., not actively shedding MRSA) or exposure to high risk environments (e.g., contact with MRSA carrier, prolonged hospitalization). Monitoring colonization status should be done according to hospital policies.

• Results from BBL CHROMagar MRSA II should be used as an adjunct to nosocomial infection control efforts to identify patients needing enhanced precautions. Results should not be used to guide or monitor treatment of MRSA infections. This device can be used to identify patients for isolation or removal from isolation to control nosocomial transmission of MRSA.

• A BBL CHROMagar MRSA II result of MRSA not detected following a previous test with MRSA detected may indicate treatment eradication success or may occur due to intermittent shedding. A recent study demonstrated that a negative culture, following three negative weekly surveillance cultures, can predict clearance of MRSA colonization in most (94%) colonized patients.11

• Incubation in CO₂ is not recommended and may result in false negative cultures.

• A heavy bacterial load and/or some specimens may produce nonspecificcoloring of the primary quadrant of the medium. This could result in the medium exhibiting mauve, purple, green or blue coloration or a slight haze on top of the medium, but lacking distinct colonies. Non-specific coloring of the medium should not be interpreted as positive.

• Pediatric samples were not extensively analyzed during the clinical investigation; therefore, the performance of this assay with pediatric samples is unknown.

• Because the isolation of MRSA is dependent on the number of organisms present in the sample, reliable results are dependent on proper specimen collection, handling, and storage.

XII EXPECTED VALUES
A) BBL CHROMagar Staph aureus
After proper incubation, read plates against a white background. S. aureus will produce mauve to orange/mauve colored colonies on side I of the plate. Most gram-positive organisms, if not inhibited, will produce blue, blue-green or natural color (colorless, white or cream) colonies. Gram-negative organisms and yeasts are partially to completely inhibited.

B) BBL CHROMagar MRSA II
Read plates against a white background. MRSA will produce mauve to orange/mauve colonies on side II of the plate. Most gram-positive organisms, if not inhibited, will produce blue, blue-green or natural colonies. Gram-negative organisms and yeast are partially to completely inhibited.

XIII PERFORMANCE CHARACTERISTICS
A) BBL CHROMagar Staph aureus
Clinical Studies
In a field trial conducted at a large metropolitan hospital, 201 throat and sputum specimens from cystic fibrosis patients and 459 nasal specimens from other hospital patients were evaluated on BBL CHROMagar Staph aureus. BBL CHROMagar Staph aureus was compared to blood agar or Mannitol Salt Agar, with isolate confirmation by slide coagulase. S. aureus was recovered from 190 combined specimens. BBL CHROMagar Staph aureus detected 9 additional S. aureus positive cultures which were not recovered on conventional media. Four potential false positives were also observed on the BBL CHROMagar Staph aureus medium following 24 h incubation: two corynebacteria and two coagulase-negative staphylococci. BBL CHROMagar Staph aureus produced an overall sensitivity of 99.5% and a specificity of 99.2%.11

B) BBL CHROMagar MRSA II
Clinical studies
BBL CHROMagar MRSA II was evaluated at three geographically diverse clinical laboratories with surveillance specimens of the anterior nares. Specimens were evaluated by comparing the recovery of MRSA on Trypticase Soy Agar with 5% Sheep Blood (TSA II) plates and each site’s routine procedure for identification of S. aureus (Traditional Culture) to BBL CHROMagar MRSA II plates. The routine procedure for two sites included staphylococcal latex agglutination testing and the third site included coagulase testing. All S. aureus recovered were tested for mecA mediated oxacillin resistance by the cefoxitin disk diffusion test. Cefoxitin disk (30 μg) diffusion test results followed CLSI methods and interpretive criteria.11 BBL CHROMagar MRSA II was interpreted as positive for MRSA at 20 – 26 h based on detection of mauve colonies.
Table 2: BBL CHROMagar MRSA II (CMRSA II) Performance vs. Cefoxitin Disk

<table>
<thead>
<tr>
<th>CMRSA II Result</th>
<th>MRSA</th>
<th>Not MRSA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>149</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Not MRSA</td>
<td>13</td>
<td>1024</td>
<td>1037</td>
</tr>
<tr>
<td></td>
<td>162</td>
<td>1025</td>
<td>1187</td>
</tr>
</tbody>
</table>

Reference Method: Cefoxitin Disk
Positive Percent Agreement: 92% (86.7%, 95.7%)
Negative Percent Agreement: 99.9% (99.5%, 100%)

The positive percent agreement and negative percent agreement of BBL CHROMagar MRSA II at 20 – 26 h was 92% and 99.9%, respectively, using the cefoxitin disk result as reference (Table 3).

Table 3: BBL CHROMagar MRSA II Performance vs. Cefoxitin Disk

<table>
<thead>
<tr>
<th>Positive Percent Agreement (95% CI)</th>
<th>Negative Percent Agreement (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92% (149/162) (86.7%, 95.7%)</td>
<td>99.9% (1024/1025) (99.5%, 100%)</td>
</tr>
</tbody>
</table>

With combined data from two clinical trial sites, the positive percent agreement of BBL CHROMagar MRSA II compared to Traditional Culture was 92% at 20 – 26 h and the negative percent agreement was 98.8% (Table 4).

Table 4: BBL CHROMagar MRSA II Performance vs. Traditional Culture at Two Clinical Trial Sites

<table>
<thead>
<tr>
<th>Traditional Culture</th>
<th>CMRSA II Result</th>
<th>MRSA</th>
<th>Not MRSA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>92</td>
<td>9*</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Not MRSA</td>
<td>8</td>
<td>760</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>769</td>
<td>869</td>
<td></td>
</tr>
</tbody>
</table>

Reference Method: Traditional Culture
Positive Percent Agreement: 92% (84.8%, 96.5%)
Negative Percent Agreement: 98.8% (97.8%, 99.5%)

* Nine samples that were positive on BBL CHROMagar MRSA II and negative by Traditional Culture were confirmed as MRSA by cefoxitin disk diffusion testing.

At the third clinical trial site, the positive percent agreement of BBL CHROMagar MRSA II compared to Traditional Culture was 90.2% at 20 – 26 h and the negative percent agreement was 98.9% (Table 5).

Table 5: BBL CHROMagar MRSA II Performance vs. Traditional Culture at Third Clinical Trial Site

<table>
<thead>
<tr>
<th>Traditional Culture</th>
<th>CMRSA II Result</th>
<th>MRSA</th>
<th>Not MRSA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>46</td>
<td>3*</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Not MRSA</td>
<td>5</td>
<td>264</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>267</td>
<td>318</td>
<td></td>
</tr>
</tbody>
</table>

Reference Method: Traditional Culture
Positive Percent Agreement: 90.2% (78.6%, 96.7%)
Negative Percent Agreement: 98.9% (96.8%, 99.8%)

* Two samples that were positive on BBL CHROMagar MRSA II and negative by Traditional Culture were confirmed as MRSA by cefoxitin disk diffusion testing.
Reproducibility Testing
Reproducibility testing was conducted at three clinical sites to demonstrate the ability of BBL CHROMagar MRSA II to provide reproducible results with known microorganisms. A blinded panel of MRSA strains and MSSA strains were provided to each site for testing. Each panel was tested in triplicate on three days at each site. For all sites, the results for this study showed ≥ 95% reproducible results within each site and across all sites for the entire panel.

Challenge Testing
Testing of twenty (20) challenge strains of S. aureus was conducted at three clinical sites using an MRSA suspension of 10^6 to 10^7 CFU/mL. Ten μL of this suspension was then inoculated onto BBL CHROMagar MRSA II. The panel included 14 MRSA (heterogeneous and homogeneous samples), and 6 MSSA. At each clinical trial site, sensitivity was 100% for the 14 MRSA strains and specificity was 100% for the 6 MSSA strains.

Internal Performance Evaluation
Recovery Rate
BBL CHROMagar MRSA II was evaluated to determine the recovery rate (limit of detection (LOD)) for recovery of methicillin resistant S. aureus. Seven test strains, representing five heterogeneous and two homogeneous MRSA were evaluated for recovery on BBL CHROMagar MRSA II.15 Non-selective Columbia Agar with 5% Sheep Blood plates were used to determine the organism concentration expressed in colony forming units (CFU) for each dilution.

Analytical studies including incubation time, analytical reactivity or sensitivity, interfering substances and reproducibility were all performed using an MRSA suspension of 1x10^5 CFU/mL. Ten μL of this suspension was then inoculated onto BBL CHROMagar MRSA II.

Interference Study
Commonly used transport devices, nasal spray and whole blood were evaluated for potential interference and inhibition of MRSA on BBL CHROMagar MRSA II. Nasal sprays containing fluticasone propionate, azelastine hydrochloride and oxymetazoline hydrochloride as well as OTC throat drops containing menthol demonstrated antibacterial activity. No other substances or transport devices interfered with recovery of MRSA on BBL CHROMagar MRSA II.16

Cross Reactivity
Internal testing of other Staphylococcus and non-Staphylococcus organisms was conducted in order to determine the potential cross reactivity of these organisms with BBL CHROMagar MRSA II. Two hundred and eighty-five non-MRSA organisms were tested, including the following genera: Acinetobacter, Aerococcus, Aeromonas, Bacillus, Bacteroides, Burkholderia, Campylobacter, Candida, Chryseobacterium, Citrobacter, Clostridium, Corynebacterium, Cryptococcus, Edwardsiella, Enterrobacter, Enterococcus, Escherichia, Eubacterium, Haemophilus, Klebsiella, Kocuria, Kyrtococcus, Lactobacillus, Micrococcus, Moraxella, Morganella, Neisseria, Oerskovia, Planococcus, Plesiomonas, Prevotella, Proteus, Providencia, Pseudomonas, Rhodococcus, Rothia, Salmonella, Serratia, Shigella, Staphylococcus, Streptococcus and Vibrio. In the Cross Reactivity study, strains of Chryseobacterium meningosepticum, Corynebacterium jeikeium, Enteroccoccus faecalis (VRE), Rhodococcus equi, Bacillus cereus, Staphylococcus simulans, S. epidermidis, and methicillin-susceptible Staphylococcus aureus produced mauve-colored colonies. Overall analytical specificity of isolate testing was 97.3% at 24 h.

Sensitivity (Analytical Reactivity)
Internal testing of methicillin-resistant Staphylococcus aureus was conducted in order to determine sensitivity of the organism with BBL CHROMagar MRSA II. Two hundred and ninety-two MRSA including USA 100, and USA 300 isolates were evaluated on BBL CHROMagar MRSA II using a suspension of 10^5 CFU/mL. Ten μL of this suspension was then inoculated onto BBL CHROMagar MRSA II. Overall analytical sensitivity of isolate testing was 92.7% at 24 h. Twenty-seven of the two hundred and ninety-two MRSA isolates which demonstrated non-mauve or no growth results during the analytical reactivity testing were further evaluated on BBL CHROMagar MRSA II using a suspension of 10^6 CFU/mL. Ten μL of this suspension was then inoculated on to BBL CHROMagar MRSA II. Twenty-five of the twenty-seven isolates evaluated produced mauve colonies on BBL CHROMagar MRSA II at 24 h at this concentration.

XIV AVAILABILITY
Cat. No. 215359
BBL™ CHROMagar™ MRSA II, BBL™ CHROMagar™ Staph aureus Bi-plate, Pkg. of 20 plates

XV REFERENCES
A) BBL CHROMagar Staph aureus

B) BBL CHROMagar MRSA II

Technical Information: In the United States contact BD Technical Service and Support at 800-638-8663 or www.bd.com/ds.